Design and applications of an advanced hybrid meta-heuristic algorithm for optimization problems

Abstract

This paper designed an advanced hybrid algorithm (haDEPSO) to solve the optimization problems, based on multi-population approach. It integrated with suggested advanced DE (aDE) and PSO (aPSO). Where in aDE a novel mutation strategy and crossover probability along with the slightly changed selection scheme are introduced, to avoid premature convergence. And aPSO consists of the novel gradually varying inertia weight and acceleration coefficient parameters, to escape stagnation. So, convergence characteristic of aDE and aPSO provides different approximation to the solution space. Thus, haDEPSO achieve better solutions due to integrating merits of aDE and aPSO. Also in haDEPSO individual population is merged with other in a pre-defined manner, to balance between global and local search capability. The algorithms efficiency is verified through 23 basic, 30 CEC 2014 and 30 CEC 2017 test suite and comparing the results with various state-of-the-art algorithms. The numerical, statistical and graphical analysis shows the effectiveness of these algorithms in terms of accuracy and convergence speed. Finally, three real world problems have been solved to confirm problem-solving capability of proposed algorithms. All these analyses confirm the superiority of the proposed algorithms over the compared algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abderazek H, Sait S, Yildiz AR (2019a) Mechanical engineering design optimisation using novel adaptive differential evolution algorithm. Int J Veh Des 80(2/3/4):285–329

    Article  Google Scholar 

  2. Abderazek H, Sait SM, Yildiz AR (2019b) Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics. Int J Veh Des 80(2/3/4):121–136

    Article  Google Scholar 

  3. Abderazek H, Yıldız A, Mirjalili S (2020a) Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowl Based Syst 191:105237

    Article  Google Scholar 

  4. Abderazek H, Yıldız BS, Yıldız AR, Albak EI, Sait SM, Bureerat S (2020b) Butterfly optimization algorithm for optimum shape design of automobile suspension components. Mater Test 62(4):365–370

    Article  Google Scholar 

  5. Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering studies In: Studies in computational intelligence, vol 816. Springer, Boston, MA, USA, pp. 1–7

    Google Scholar 

  6. Abualigah L (2020a) Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. Neural Comput Appl 32:12381–12401

    Article  Google Scholar 

  7. Abualigah L (2020b) Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05107-y

    Article  Google Scholar 

  8. Abualigah L, Diabat A (2020a) A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Clust Comput. https://doi.org/10.1007/s10586-020-03075-5

    Article  Google Scholar 

  9. Abualigah L, Diabat A (2020b) A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications. Neural Comput Appl 32:15533–15556

    Article  Google Scholar 

  10. Abualigah LMQ, Hanandeh ES (2015) Applying genetic algorithms to information retrieval using vector space model. Int J Comput Sci Eng Appl 5(1):19–28

    Google Scholar 

  11. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795

    Article  Google Scholar 

  12. Abualigah LM, Khader AT, Hanandeh ES (2017a) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466

    Article  Google Scholar 

  13. Abualigah LM, Khader AT, Hanandeh ES, Gandomi AH (2017b) A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Appl Soft Comput 60:423–435

    Article  Google Scholar 

  14. Abualigah LM, Khader AT, Hanandeh ES (2018a) A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125

    Article  Google Scholar 

  15. Abualigah LM, Khader AT, Hanandeh ES (2018b) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48:4047–4071

    Article  Google Scholar 

  16. Ali M (2007) Differential Evolution with preferential crossover. Eur J Oper Res 181(3):1137–1147

    MathSciNet  MATH  Article  Google Scholar 

  17. Amjady N, Sharifzadeh H (2010) Solution of non-convex economic dispatch problem considering valve loading effect by a new modified differential evolution algorithm. Int J Electr Power Energy Syst 32(8):893–903

    Article  Google Scholar 

  18. Ang KM, Lim WH, Isa NAM, Tiang SS, Wong CH (2020) A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems. Expert Syst Appl 140:1–23

    Article  Google Scholar 

  19. Awad N, Ali M, Liang J, Qu B, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, Technical report

  20. Aye CM, Pholdee N, Yildiz AR, Bureerat S, Sait SM (2019) Multi-surrogate-assisted metaheuristics for crashworthiness optimization. Int J Veh Des 80(2–4):223–240

    Article  Google Scholar 

  21. Azadani EN, Hosseinian S, Moradzadeh B (2010) Generation and reserve dispatch in a competitive market using constrained particle swarm optimization. Int J Electr Power Energy Syst 32(1):79–86

    Article  Google Scholar 

  22. Bansal JC, Sharma H, Clerc JSSM (2014) Spider monkey optimization algorithm for numerical optimization. Memet Comput 6(1):31–47

    Article  Google Scholar 

  23. Ben GN (2020) An accelerated differential evolution algorithm with new operators for multi-damage detection in plate-like structures. Appl Math Model 80:366–383

    MATH  Article  Google Scholar 

  24. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  25. Cai Y, Wang J (2013) Differential evolution with neighborhood and direction information for numerical optimization. IEEE Trans Cybern 43(6):2202–2215

    MathSciNet  Article  Google Scholar 

  26. Cai XJ, Cui Y, Tan Y (2009) Predicted modified PSO with time varying accelerator coefficients. Int J Bioinspir Comput 1(1/2):50–60

    Article  Google Scholar 

  27. Caponio A, Neri F, Tirronen V (2009) Superfit control adaption in memetic differential evolution frameworks. Soft Comput 13(8–9):811–831

    Article  Google Scholar 

  28. Champasak P, Panagant N, Pholdee N, Bureerata S, Yildiz A (2020) Self-adaptive many objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100:105783

    Article  Google Scholar 

  29. Chegini SN, Bagheri A, Najafi F (2018) A new hybrid PSO based on sine cosine algorithm and Levy flight for solving optimization problems. Appl Soft Comput 73:697–726

    Article  Google Scholar 

  30. Chen X, Tianfield H, Mei C, Du W, Liu G (2017) Biogeography-based learning particle swarm optimization. Soft Comput 21:7519–7541

    Article  Google Scholar 

  31. Chen Y, Li L, Peng H, Xiao J, Wu Q (2018a) Dynamic multi-swarm differential learning particle swarm optimizer. Swarm Evolut Comput 39:209–221

    Article  Google Scholar 

  32. Chen Y, Li L, Xiao J, Yang Y, Liang J, Li T (2018b) Particle swarm optimizer with crossover operation. Eng Appl Artif Intell 70:159–169

    Article  Google Scholar 

  33. Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384

    Article  Google Scholar 

  34. Das KN, Parouha RP (2015) An ideal tri-population approach for unconstrained optimization and applications. Appl Math Comput 256:666–701

    MathSciNet  MATH  Article  Google Scholar 

  35. Dash J, Dam B, Swain R (2020) Design and implementation of sharp edge FIR filters using hybrid differential evolution particle swarm optimization. AEU Int J Electron Commun 114:153019

    Article  Google Scholar 

  36. de Castro LN, Von Zuben FJ (2000) The clonal selection algorithm with engineering applications. Proc GECCO 2000:36–39

    Google Scholar 

  37. Do DTT, Lee S, Lee J (2016) A modified differential evolution algorithm for tensegrity structures. Compos Struct 158:11–19

    Article  Google Scholar 

  38. Dor AE, Clerc M, Siarry P (2012) Hybridization of differential evolution and particle swarm optimization in a new algorithm DEPSO-2S. Swarm Evolut Comput 7269:57–65

    Article  Google Scholar 

  39. Du SY, Liu ZG (2020) Hybridizing particle swarm optimization with JADE for continuous optimization. Multimed Tools Appl 79:4619–4636

    Article  Google Scholar 

  40. Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: Jao L et al (eds) Advances in natural computation. Springer, Heidelberg, pp 264–273

    Google Scholar 

  41. Epitropakis MG, Plagianakos VP, Vrahatis MN (2012) Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Inf Sci 216:50–92

    Article  Google Scholar 

  42. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166

    Article  Google Scholar 

  43. Espitia HE, Sofrony JI (2018) Statistical analysis for vortex particle swarm optimization. Appl Soft Comput 67:370–386

    Article  Google Scholar 

  44. Eusuff M, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plann Manag 129(3):210–225

    Article  Google Scholar 

  45. Famelis IT, Alexandridis A, Tsitouras C (2017) A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers. Eng Optim 50(8):1364–1379

    MathSciNet  Article  Google Scholar 

  46. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2019) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191:1–34

    Google Scholar 

  47. Fu H, Ouyang D, Xu J (2011) A self-adaptive differential evolution algorithm for binary CSPs. Comput Math Appl 62(7):2712–2718

    MathSciNet  MATH  Article  Google Scholar 

  48. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    MathSciNet  MATH  Article  Google Scholar 

  49. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  50. Ghosh A, Das S, Chowdhury A, Giri R (2011) An improved differential evolution algorithm with fitness-based adaptation of the control parameters. Inf Sci 181:3749–3765

    MathSciNet  Article  Google Scholar 

  51. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99

    Article  Google Scholar 

  52. Gong W, Cai Z (2013) Differential evolution with ranking-based mutation operators. IEEE Trans Cybern 43(6):2066–2081

    Article  Google Scholar 

  53. Gui L, Xia X, Yu F, Wu H, Wu R, Wei B, He G (2019) A multi-role based differential evolution. Swarm Evolut Comput 50:1–15

    Article  Google Scholar 

  54. Guo SM, Yang CC (2015) Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Trans Evol Comput 19(1):31–49

    MathSciNet  Article  Google Scholar 

  55. Hakli H, Uguz H (2014) A novel particle swarm optimization algorithm with levy flight. Appl Soft Comput 23:333–345

    Article  Google Scholar 

  56. Hamza F, Abderazek H, Lakhdar S, Ferhat D, Yıldız AR (2018) Optimum design of cam-roller follower mechanism using a new evolutionary algorithm. Int J Adv Manuf Technol 99(5–8):1267–1282

    Article  Google Scholar 

  57. Hao Z-F, Gua G-H, Huang H (2007) A particle swarm optimization algorithm with differential evolution. In: Proceedings of sixth international conference on machine learning and cybernetics. pp 1031–1035

  58. Havens TC, Spain CJ, Salmon NG. Keller JM (2008) Roach infestation optimization. In: Proceedings of the IEEE swarm intelligence symposium. pp 1–7

  59. He Q, Han C (2006) An improved particle swarm optimization algorithm with disturbance term. Comput Intell Bioinform 4115:100–108

    Article  Google Scholar 

  60. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Article  Google Scholar 

  61. Hendtlass T (2001) A Combined Swarm differential evolution algorithm for optimization problems. In: Proceedings of 14th international conference on industrial and engineering applications of artificial intelligence and expert systems. Lecture notes in computer science, vol 2070. pp 11–18

  62. Hosseini SA, Hajipour A, Tavakoli H (2019) Design and optimization of a CMOS power amplifier using innovative fractional-order particle swarm optimization. Appl Soft Comput 85:1–10

    Article  Google Scholar 

  63. Hu L, Hua W, Lei W, Xiantian Z (2020) A modified Boltzmann annealing differential evolution algorithm for inversion of directional resistivity logging-while-drilling measurements. J Petrol Sci Eng 180:106916

    Google Scholar 

  64. Huang H, Jiang L, Yu X, Xie D (2018) Hypercube-based crowding differential evolution with neighborhood mutation for multimodal optimization. Int J Swarm Intell Res 9(2):15–27

    Article  Google Scholar 

  65. Isiet M, Gadala M (2019) Self-adapting control parameters in particle swarm optimization. Appl Soft Comput 83:1–24

    Article  Google Scholar 

  66. Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern Syst 42(2):482–500

    Article  Google Scholar 

  67. Jana ND, Sil J (2016) Interleaving of particle swarm optimization and differential evolution algorithm for global optimization. Int J Comput Appl 38(2–3):116–133

    Google Scholar 

  68. Jie J, Zeng J, Han C, Wang Q (2008) Knowledge-based cooperative particle swarm optimization. Appl Math Comput 205(2):861–873

    MathSciNet  MATH  Article  Google Scholar 

  69. Jordehi AR (2015) Enhanced leader PSO: a new PSO variant for solving global optimisation problems. Appl Soft Comput 26:401–417

    Article  Google Scholar 

  70. Kang Q, He H (2011) A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems. Microprocess Microsyst 35(1):10–17

    Article  Google Scholar 

  71. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39(3):459–471

    MathSciNet  MATH  Article  Google Scholar 

  72. Karen I, Yildiz AR, Kaya N, Ozturk N, Ozturk F (2006) Hybrid approach for genetic algorithm and Taguchi’s method based design optimization in the automotive industry. Int J Prod Res 44(22):4897–4914

    MATH  Article  Google Scholar 

  73. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4. IEEE, pp 1942–1948

  74. Khajeh A, Ghasemi MR, Arab HG (2019) Modified particle swarm optimization with novel population initialization. J Inf Optim Sci 40(6):1167–1179

    MathSciNet  Google Scholar 

  75. Kiran MS (2017) Particle swarm optimization with a new update mechanism. Appl Soft Comput 60:670–678

    Article  Google Scholar 

  76. Kohler M, Vellasco MMBR, Tanscheit R (2019) PSO+: A new particle swarm optimization algorithm for constrained problems. Appl Soft Comput 85:1–26

    Article  Google Scholar 

  77. Lanlan K, Ruey SC, Wenliang C, Yeh C (2020) Non-inertial opposition-based particle swarm optimization and its theoretical analysis for deep learning applications. Appl Soft Comput 88:1–10

    Google Scholar 

  78. Li X, Yin M (2014) Modified differential evolution with self-adaptive parameters method. J Combin Optim 31(2):546–576

    MathSciNet  MATH  Article  Google Scholar 

  79. Li C, Yang S, Nguyen TT (2012) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Syst Man Cybern 42(3):627–646

    Article  Google Scholar 

  80. Li S, Gu Q, Gong W, Ning B (2020) An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers Manag 205:1–16

    Google Scholar 

  81. Liang J, Qu B, Suganthan P (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  82. Liu G, Guo Z (2016) A clustering-based differential evolution with random-based sampling and Gaussian sampling. Neurocomputing 205:229–246

    Article  Google Scholar 

  83. Liu P, Liu J (2017) Multi-leader PSO: a new PSO variant for solving global optimization problems. Appl Soft Comput 61:256–263

    Article  Google Scholar 

  84. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Article  Google Scholar 

  85. Liu Z-G, Ji X-H, Yang Y (2019) Hierarchical differential evolution algorithm combined with multi-cross operation. Expert Syst Appl 130:276–292

    Article  Google Scholar 

  86. Lynn N, Suganthan P (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evolut Comput 24:11–24

    Article  Google Scholar 

  87. Lynn N, Suganthan PN (2017) Ensemble particle swarm optimizer. Appl Soft Comput 55:533–548

    Article  Google Scholar 

  88. Mahmoodabadi MJ, Mottaghi ZS, Bagheri A (2014) High exploration particle swarm optimization. J Inf Sci 273:101–111

    MathSciNet  Article  Google Scholar 

  89. Mallipeddi R, Lee M (2015) An evolving surrogate model-based differential evolution algorithm. Appl Soft Comput 34:770–787

    Article  Google Scholar 

  90. Mao B, Xie Z, Wang Y, Handroos H, Wu H (2018) A hybrid strategy of differential evolution and modified particle swarm optimization for numerical solution of a parallel manipulator. Math Probl Eng 2018:9815469

    Google Scholar 

  91. Marzbali AG (2020) A novel nature-inspired meta-heuristic algorithm for optimization: bear smell search algorithm. Soft Comput 24:13003–13035

    Article  Google Scholar 

  92. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366

    Article  Google Scholar 

  93. Meng Z, Li G, Wang X, Sait SM, Yıldız AR (2020) A Comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09443-z

    Article  Google Scholar 

  94. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  95. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    MathSciNet  Article  Google Scholar 

  96. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  97. Mirjalili S, Mirjalili SM, Lewis A (2014a) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  98. Mirjalili SA, Lewis A, Sadiq AS (2014b) Autonomous particles groups for particle swarm optimization. Arab J Sci Eng 39:4683–4697

    MATH  Article  Google Scholar 

  99. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  100. Mishra KK, Bisht H, Singh T, Chang V (2018) A direction aware particle swarm optimization with sensitive swarm leader. Big Data Res 14:57–67

    Article  Google Scholar 

  101. Mohamed AW (2015) An improved differential evolution algorithm with triangular mutation for global numerical optimization. Comput Ind Eng 85:359–375

    Article  Google Scholar 

  102. Murase H, Wadano A (1998) Photosynthetic algorithm for machine learning and TSP. IFAC Proc Vol 31(12):19–24

    Article  Google Scholar 

  103. Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36

    MathSciNet  Article  Google Scholar 

  104. Nenavath H, Jatoth RK, Das S (2018) A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking. Swarm Evolut Comput 43:1–30

    Article  Google Scholar 

  105. Ngoa TT, Sadollahb A, Kima JH (2016) A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. J Comput Sci 13:68–82

    MathSciNet  Article  Google Scholar 

  106. Niu B, Li L (2008) A novel PSO-DE-based hybrid algorithm for global optimization. Lect Notes Comput Sci 5227:156–163

    Article  Google Scholar 

  107. Nwankwor E, Nagar AK, Reid DC (2013) Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput Geosci 17(2):249–268

    MATH  Article  Google Scholar 

  108. Ozkaya H, Yıldız M, Yıldız AR, Bureerat S, Yıldız BS, Sait SM (2020) The equilibrium optimization algorithm and the response surface-based metamodel for optimal structural design of vehicle components. Mater Test 62(5):492–496

    Article  Google Scholar 

  109. Panagant N, Pholdee N, Wansasueb K, Bureerat S, Yildiz AR, Sait S (2019) Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame. Int J Veh Des 80(2/3/4):176–208

    Article  Google Scholar 

  110. Panagant N, Pholdee N, Bureerat S, Yıldız AR, Sait SM (2020) Seagull optimization algorithm for solving real-world design optimization problems. Mater Test 6(62):640–644

    Article  Google Scholar 

  111. Pant M, Thangaraj R, Abraham A (2011) a new hybrid meta-heuristic for solving global optimization problems. New Math Nat Comput 7(3):363–381

    MathSciNet  Article  Google Scholar 

  112. Parouha RP, Das KN (2015) An efficient hybrid technique for numerical optimization and applications. Comput Ind Eng 83:193–216

    Article  Google Scholar 

  113. Parouha RP, Das KN (2016a) A robust memory based hybrid differential evolution for continuous optimization problem. Knowl Based Syst 103:118–131

    Article  Google Scholar 

  114. Parouha RP, Das KN (2016b) DPD: an intelligent parallel hybrid algorithm for economic load dispatch problems with various practical constraints. Expert Syst Appl 63:295–309

    Article  Google Scholar 

  115. Patel VK, Savsani VJ (2015) Heat transfers search a novel optimization algorithm. Inf Sci 324:217–246

    Article  Google Scholar 

  116. Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC). pp 1–8

  117. Pinto P, Runkler TA, Sousa JM (2005) Wasp swarm optimization of logistic systems. In: Ribeiro B, Albrecht RF, Dobnikar A, Pearson DW, Steele NC (eds) Adaptive and natural computing algorithms. Springer, Vienna, pp 264–267

    Google Scholar 

  118. Prabha S, Yadav R (2019) Differential evolution with biological-based mutation operator. Eng Sci Technol Int J 23(2):253–263

    Google Scholar 

  119. Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. IEEE Congr Evolut Comput 1782:1785–1791

    Google Scholar 

  120. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  121. Qiu X, Tan KC, Xu J-X (2017) Multiple exponential recombination for differential evolution. IEEE Trans Cybern 47(4):995–1006

    Article  Google Scholar 

  122. Qiu X, Xu J-X, Xu Y, Tan KC (2018) A new differential evolution algorithm for minimax optimization in robust design. IEEE Trans Cybern 48(5):1355–1368

    Article  Google Scholar 

  123. Rahnamayan S, Tizhoosh H, Salama M (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  124. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  125. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Article  Google Scholar 

  126. Sahu BK, Pati S, Panda S (2014) Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Gener Transm Distrib 8(11):1789–1800

    Article  Google Scholar 

  127. Salehpour M, Jamali A, Bagheri A, Nariman-zadeh N (2017) A new adaptive differential evolution optimization algorithm based on fuzzy inference system. Eng Sci Technol 20(2):587–597

    Google Scholar 

  128. Sarangkum R, Wansasueb K, Panagant N, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2019) Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation. Int J Veh Des 80(2/3/4):162–175

    Article  Google Scholar 

  129. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  130. Seyedmahmoudian M, Rahmani R, Mekhilef S, Than Oo AM, Stojcevski A, Soon TK, Ghandhari AS (2015) Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method. Trans Sustain Energy 6(3):850–862

    Article  Google Scholar 

  131. Shabani A, Asgarian B, Gharebaghi SA, Salido MA, Giret A (2019) A new optimization algorithm based on search and rescue operations. Math Probl Eng 2019:2482543

    Article  Google Scholar 

  132. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  133. Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plann Manag 120(4):423–443

    Article  Google Scholar 

  134. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    MathSciNet  MATH  Article  Google Scholar 

  135. Sun J, Fang W, Wu X, Palade V, Xu W (2012) Quantum behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evolut Comput 20(3):349–393

    Article  Google Scholar 

  136. Talbi H, Batouche M (2004) Hybrid particle swarm with differential evolution for multimodal image registration. Proc IEEE Int Conf Ind Technol 3:1567–1573

    Google Scholar 

  137. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: IEEE congress on evolutionary computation. pp 71–78

  138. Tang B, Zhu Z, Luo J (2016) Hybridizing particle swarm optimization and differential evolution for the mobile robot global path planning. Int J Adv Rob Syst 13(3):1–17

    Google Scholar 

  139. Tang B, Xiang K, Pang M (2018) An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution. Neural Comput Appl 32:4849–4883

    Article  Google Scholar 

  140. Tanweer MR, Suresh S, Sundararajan N (2016) Dynamicmentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf Sci 326:1–24

    Article  Google Scholar 

  141. Tatsumi K, Ibuki T, Tanino T (2013) A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions. Appl Math Comput 219(17):8991–9011

    MathSciNet  MATH  Article  Google Scholar 

  142. Tian MN, Gao XB (2019) Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization. Inf Sci 478:422–448

    Article  Google Scholar 

  143. Too J, Abdullah AR, Saad NM (2019) Hybrid binary particle swarm optimization differential evolution-based feature selection for EMG signals classification. Axioms 8(3):79

    Article  Google Scholar 

  144. Wang Y, Cai Z (2009) A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems. Front Comput Sci 3:38–52

    Article  Google Scholar 

  145. Wang Y, Cai ZZ, Zhang QF (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  146. Wedde HF, Farooq M, Zhang Y (2004) BeeHive: An efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo M, Birattari M, Blum C, Gambardella LM, Mondada F, Stützle T (eds) Ant colony optimization and swarm intelligence, vol 3172. Springer. Berlin, Heidelberg, pp 83–94

    Google Scholar 

  147. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  148. Xia X, Gui L, He G, Xie C, Wei B, Xing Y, Tang Y (2018) A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm. J Comput Sci 26:488–500

    Article  Google Scholar 

  149. Xin B, Chen J, Peng Z, Pan F (2010) An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Sci China Inf Sci 53(5):980–989

    MathSciNet  Article  Google Scholar 

  150. Xiong H, Qiu B, Liu J (2020) An improved multi-swarm particle swarm optimizer for optimizing the electric field distribution of multichannel transcranial magnetic stimulation. Artif Intell Med 104:101790

    Article  Google Scholar 

  151. Xuewen X, Ling G, Hui ZZ (2018) A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful. Appl Soft Comput 67:126–140

    Article  Google Scholar 

  152. Yan B, Zhao Z, Zhou Y, Yuan W, Li J, Wu J, Cheng D (2017) A Particle swarm optimization algorithm with random learning mechanism and levy flight for optimization of atomic clusters. Comput Phys Commun 219:79–86

    Article  Google Scholar 

  153. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. Lecture notes in computer science, vol 5792. Springer, Berlin, pp 169–178

  154. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: González J, Pelta D, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010), studies in computational intelligence, vol 284. Springer, Berlin Heidelberg, pp 65–74

    Google Scholar 

  155. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: IEEE world congress on nature and biologically inspired computing 2009 (NaBIC 2009). pp 210–214

  156. Yang X, Yuan J, Mao H (2007) A modified particle swarm optimizer with dynamic adaptation. Appl Math Comput 189:1205–1213

    MathSciNet  MATH  Article  Google Scholar 

  157. Yang M, Li C, Cai Z, Guan J (2015) Differential evolution with auto-enhanced population diversity. IEEE Trans Cybern 45(2):302–315

    Article  Google Scholar 

  158. Yang X, Li J, Peng X (2019) An improved differential evolution algorithm for learning high-fidelity quantum controls. Sci Bull 64(19):1402–1408

    Article  Google Scholar 

  159. Yıldız BS (2017a) A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. Int J Veh Des 73(1):208–218

    Article  Google Scholar 

  160. Yıldız BS (2017b) Natural frequency optimization of vehicle components using the interior search algorithm. Mater Test 59(5):456–458

    Article  Google Scholar 

  161. Yıldız AR (2018) Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Mater Test 60(3):311–315

    Article  Google Scholar 

  162. Yıldız AR (2019) A novel hybrid whale nelder mead algorithm for optimization of design and manufacturing problems. Int J Adv Manuf Technol 105:5091–5104

    Article  Google Scholar 

  163. Yıldız BS (2020a) The spotted hyena optimization algorithm for weight-reduction of automobile brake components. Mater Test 62(4):383–388

    Article  Google Scholar 

  164. Yıldız BS (2020b) The mine blast algorithm for the structural optimization of electrical vehicle components. Mater Test 62(5):497–501

    Article  Google Scholar 

  165. Yıldız BS (2020c) optimal design of automobile structures using moth-flame optimization algorithm and response surface methodology. Mater Test 62(4):371–377

    Article  Google Scholar 

  166. Yıldız AR, Yıldız BS (2019) The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components. Mater Test 8(61):744–748

    Article  Google Scholar 

  167. Yıldız AR, Mirjalili S, Yıldız BS, Sait SM, Bureerata S, Pholdee N (2019a) A new hybrid harris hawks Nelder–Mead optimization algorithm for solving design and manufacturing problems. Mater Test 8(61):735–743

    Article  Google Scholar 

  168. Yıldız AR, Mirjalili S, Yıldız BS, Sait SM, Li X (2019b) The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations. Mater Test 61(8):725–733

    Article  Google Scholar 

  169. Yıldız AR, Abderazek H, Mirjalili S (2020a) A comparative study of recent non-traditional methods for mechanical design optimization. Arch Comput Methods Eng 27:1031–1048

    MathSciNet  Article  Google Scholar 

  170. Yıldız AR, Bureerat S, Kurtulus E, Sadiq S (2020b) A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails. Mater Test 62(3):251–260

    Article  Google Scholar 

  171. Yıldız BS, Yıldız AR, Pholdee N, Bureerat S, Sait SM, Patel V (2020d) The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components. Mater Test 62(3):261–264

    Article  Google Scholar 

  172. Yıldız AR, Pholdee N, Bureerat S, Sadiq S (2020c) Sine-cosine optimization algorithm for the conceptual design of automobile components. Mater Test 62(7):744–748

    Article  Google Scholar 

  173. Yu X, Cao J, Shan H, Zhu L, Guo J (2014) An adaptive hybrid algorithm based on particle swarm optimization and differential evolution for global optimization. Sci World J 2014:215472

    Google Scholar 

  174. Yu H, Tan Y, Zeng J, Sun C, Jin Y (2018) Surrogate-assisted hierarchical particle swarm optimization. Inf Sci 454–455:59–72

    MathSciNet  Article  Google Scholar 

  175. Zhang H, Li X (2018) Enhanced differential evolution with modified parent selection technique for numerical optimization. Int J Comput Sci Eng 17(1):98

    Google Scholar 

  176. Zhang J, Sanderson C (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  177. Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: Proceedings of the IEEE international conference on systems, man and cybernetics, Washington DC, USA. pp 3816–3821

  178. Zhang W, Ma D, Wei J-J, Liang H-F (2014) A parameter selection strategy for particle swarm optimization based on particle positions. Expert Syst Appl 41(7):3576–3584

    Article  Google Scholar 

  179. Zhao X, Zhang Z, Xie Y, Meng J (2020) Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization. Energy 195:117014

    Article  Google Scholar 

  180. Zheng YJ (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11

    MathSciNet  MATH  Article  Google Scholar 

  181. Zheng LM, Zhang SX, Tang KS, Zheng SY (2017) Differential evolution powered by collective information. Inf Sci 399:13–29

    Article  Google Scholar 

  182. Zhu A, Xu C, Li Z, Wu J, Liu Z (2015) Hybridizing grey Wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. J Syst Eng Electron 26:317–328

    Article  Google Scholar 

Download references

Acknowledgments

Authors, heartfelt thanks to the Editor and the Reviewers for their thoughtful comments and constructive suggestions, as these comments and suggestions led us to an improvement of the work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raghav Prasad Parouha.

Ethics declarations

Conflict of interest

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parouha, R.P., Verma, P. Design and applications of an advanced hybrid meta-heuristic algorithm for optimization problems. Artif Intell Rev (2021). https://doi.org/10.1007/s10462-021-09962-6

Download citation

Keywords

  • Optimization
  • Meta-heuristic algorithm
  • Particle swarm optimization
  • Differential evolution
  • Hybrid algorithm