Applications, databases and open computer vision research from drone videos and images: a survey

Abstract

Analyzing videos and images captured by unmanned aerial vehicles or aerial drones is an emerging application attracting significant attention from researchers in various areas of computer vision. Currently, the major challenge is the development of autonomous operations to complete missions and replace human operators. In this paper, based on the type of analyzing videos and images captured by drones in computer vision, we have reviewed these applications by categorizing them into three groups. The first group is related to remote sensing with challenges such as camera calibration, image matching, and aerial triangulation. The second group is related to drone-autonomous navigation, in which computer vision methods are designed to explore challenges such as flight control, visual localization and mapping, and target tracking and obstacle detection. The third group is dedicated to using images and videos captured by drones in various applications, such as surveillance, agriculture and forestry, animal detection, disaster detection, and face recognition. Since most of the computer vision methods related to the three categories have been designed for real-world conditions, providing real conditions based on drones is impossible. We aim to explore papers that provide a database for these purposes. In the first two groups, some survey papers presented are current. However, the surveys have not been aimed at exploring any databases. This paper presents a complete review of databases in the first two groups and works that used the databases to apply their methods. Vision-based intelligent applications and their databases are explored in the third group, and we discuss open problems and avenues for future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    Workshop in conjunction with International Conference on Computer Vision: https://sites.google.com/site/uavision2017/.

  2. 2.

    Workshop in conjunction with European Conference on computer vision: https://sites.google.com/site/uavision2018/.

  3. 3.

    Workshop in conjunction with Conference on Computer Vision and Pattern Recognition: https://sites.google.com/site/uavision2019/.

  4. 4.

    https://www.pix4d.com/.

  5. 5.

    http://eros.usgs.gov/aerial-photography.

  6. 6.

    http://sipi.usc.edu/database/database.php?volume=aerials.

  7. 7.

    http://www.gpsinformation.org/dale/nmea.htm.

  8. 8.

    https://pixhawk.org.

  9. 9.

    https://www.parrot.com/us/drones/parrot-bebop-2.

  10. 10.

    https://www.bitcraze.io/crazyflie-2/.

  11. 11.

    https://link.springer.com/article/10.1007%2Fs10846-018-0954-x.

  12. 12.

    http://viper-toolkit.sourceforge.net/.

  13. 13.

    Available at http://www.youtube.com/.

  14. 14.

    Available at https://www.sensefly.com/drones/example-datasets.html.

  15. 15.

    Available at https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx.

  16. 16.

    https://www.sensefly.com/drones/ebee.html.

  17. 17.

    CanonDIGITALIXUS120IS_5.0_3000x4000.

  18. 18.

    Available at https://www.crcv.ucf.edu/data/UCF_Aerial_Action.php.

  19. 19.

    https://www.dji.com/.

  20. 20.

    Available at https://www.sr-research.com/eyelink-1000-plus/.

  21. 21.

    https://www.flir.com.

  22. 22.

    DJI—The World Leader in Camera Drones/Quadcopters for Aerial Photography.

  23. 23.

    http://kuzikus-namibia.de/xe_index.html.

  24. 24.

    https://sites.nicholas.duke.edu/uas/.

  25. 25.

    https://sites.nicholas.duke.edu/uas/.

  26. 26.

    http://droneadventures.org/.

  27. 27.

    http://cooperation.epfl.ch/.

  28. 28.

    Available at http://www.reuters.com/news/picture/ruins-of-haitis-national-palace?articleId=USRTR370GT.

  29. 29.

    Available at http://environmentalheadlines.com/ct/2011/09/01/new-england-feels-hurricane-irene%E2%80%99s-impacts/hurricane-irene-damage-ct-nat-guard-east-haven.

  30. 30.

    Available at http://www.defense.gov/Media/Photo-Gallery?igphoto=2001185999.

  31. 31.

    Available at http://www.chicagotribune.com/news/nationworld/83269837-132.html.

  32. 32.

    http://abc7chicago.com/news/illinois-tornado-victims-how-to-help-/648502/.

  33. 33.

    Nazr means “sight” in Arabic.

  34. 34.

    http://gettyimages.com.

  35. 35.

    Available at http://www.dronestagr.am/.

  36. 36.

    https://openaerialmap.org/.

  37. 37.

    https://github.com/openimagerynetwork.

  38. 38.

    http://coastalresilience.org/project-areas/california/el-nino-california/.

  39. 39.

    http://droneadventures.org/.

References

  1. Abughalieh KM, Sababha BH, Rawashdeh NA (2018) A video-based object detection and tracking system for weight sensitive uavs. Multimed Tools Appl 78:9149–9167

    Article  Google Scholar 

  2. Adams SM, Friedland CJ (2011) A survey of unmanned aerial vehicle (uav) usage for imagery collection in disaster research and management. In: 9th international workshop on remote sensing for disaster response, vol 8

  3. Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa J (2017) Hyperspectral imaging: a review on uav-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9(11):1110

    Article  Google Scholar 

  4. Al-Kaff A, García F, Martín D, De La Escalera A, Armingol J (2017) Obstacle detection and avoidance system based on monocular camera and size expansion algorithm for uavs. Sensors 17(5):1061

    Article  Google Scholar 

  5. Al-Kaff A, Martín D, García F, de la Escalera A, Armingol JM (2018) Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Syst Appl 92:447–463

    Article  Google Scholar 

  6. Al Kaff AHA (2017) Vision-based navigation system for unmanned aerial vehicles. Ph.D. dissertation, Universidad Carlos III de Madrid, 2017. https://e-archivo.uc3m.es/handle/10016/26603

  7. Al-Sheary A, Almagbile A (2017) Crowd monitoring system using unmanned aerial vehicle (uav). J Civ Eng Archit 11:1014–1024

    Google Scholar 

  8. Albanis G, Zioulis N, Dimou A, Zarpalas D, Daras P (2020) Dronepose: photorealistic uav-assistant dataset synthesis for 3d pose estimation via a smooth silhouette loss. arXiv:2008.08823

  9. Alidoost F, Arefi H (2015) An image-based technique for 3d building reconstruction using multi-view uav images. Int Arch Photogram Remote Sens Spatial Inf Sci 40(1):43

    Article  Google Scholar 

  10. Almagbile A (2019) Estimation of crowd density from uavs images based on corner detection procedures and clustering analysis. Geo-spatial Inf Sci 22(1):23–34

    Article  Google Scholar 

  11. Askar W, Elmowafy O, Youssif A, Elnashar G (2017) Optimized uav object tracking framework based on integrated particle filter with ego-motion transformation matrix. In: MATEC web of conferences, vol 125. EDP Sciences, p 04027

  12. Attari N, Ofli F, Awad M, Lucas J, Chawla S (2017) Nazr-cnn: fine-grained classification of uav imagery for damage assessment. In: 2017 IEEE international conference on data science and advanced analytics (DSAA). IEEE, pp 50–59

  13. Avola D, Cinque L, Foresti GL, Martinel N, Pannone D, Piciarelli C (2018) A uav video dataset for mosaicking and change detection from low-altitude flights. IEEE Trans Syst Man Cybern Syst 99:1–11

    Google Scholar 

  14. Avola D, Cinque L, Foresti GL, Pannone D (2018) Visual cryptography for detecting hidden targets by small-scale robots. In: International conference on pattern recognition applications and methods. Springer, pp 186–201

  15. Avola D, Foresti GL, Martinel N, Micheloni C, Pannone D, Piciarelli C (2017) Aerial video surveillance system for small-scale uav environment monitoring. In: 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE, pp 1–6

  16. Avola D, Foresti GL, Martinel N, Pannone D, Piciarelli C (2017) The umcd dataset. arXiv:1704.01426

  17. Azimi SM, Fischer P, Körner M, Reinartz P (2018) Aerial lanenet: lane marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks. arXiv:1803.06904

  18. Backes D, Schumann G, Teferele F, Boehm J (2019) Towards a high-resolution drone-based 3d mapping dataset to optimise flood hazard modelling. Int Arch Photogramm Remote Sens Spatial Inf Sci 42(W13):181–187

    Article  Google Scholar 

  19. Ballan L, Castaldo F, Alahi A, Palmieri F, Savarese S (2016) Knowledge transfer for scene-specific motion prediction. In: European conference on computer vision. Springer, pp 697–713

  20. Barbedo JGA, Koenigkan LV, Santos PM, Ribeiro ARB (2020) Counting cattle in uav images–dealing with clustered animals and animal/background contrast changes. Sensors 20(7):2126

    Article  Google Scholar 

  21. Barbedo JGA, Koenigkan LV, Santos TT, Santos PM (2019) A study on the detection of cattle in uav images using deep learning. Sensors 19(24):5436

    Article  Google Scholar 

  22. Barekatain M, Martí M, Shih HF, Murray S, Nakayama K, Matsuo Y, Prendinger H (2017) Okutama-action: an aerial view video dataset for concurrent human action detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 28–35

  23. Barmpounakis E, Geroliminis N (2020) On the new era of urban traffic monitoring with massive drone data: the pneuma large-scale field experiment. Transp Res Part C Emerg Technol 111:50–71

    Article  Google Scholar 

  24. Bejiga M, Zeggada A, Nouffidj A, Melgani F (2017) A convolutional neural network approach for assisting avalanche search and rescue operations with uav imagery. Remote Sens 9(2):100

    Article  Google Scholar 

  25. Berker Logoglu K, Lezki H, Kerim Yucel M, Ozturk A, Kucukkomurler A, Karagoz B, Erdem E, Erdem A (2017) Feature-based efficient moving object detection for low-altitude aerial platforms. In: Proceedings of the IEEE international conference on computer vision, pp 2119–2128

  26. Bharati SP, Wu Y, Sui Y, Padgett C, Wang G (2018) Real-time obstacle detection and tracking for sense-and-avoid mechanism in uavs. IEEE Trans Intell Veh 3(2):185–197

    Article  Google Scholar 

  27. Bochinski E, Senst T, Sikora T (2018) Extending iou based multi-object tracking by visual information. In: 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE, pp 1–6

  28. Bonetto M, Korshunov P, Ramponi G, Ebrahimi T (2015) Privacy in mini-drone based video surveillance. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG), vol. 4, pp. 1–6. IEEE

  29. Boroujerdian B, Genc H, Krishnan S, Cui W, Faust A, Reddi V (2018) Mavbench: micro aerial vehicle benchmarking. In: 2018 51st annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE, pp 894–907

  30. Carletti V, Greco A, Saggese A, Vento M (2018) Multi-object tracking by flying cameras based on a forward-backward interaction. IEEE Access 6:43905–43919

    Article  Google Scholar 

  31. Carletti V, Greco A, Saggese A, Vento M (2019) An intelligent flying system for automatic detection of faults in photovoltaic plants. J Ambient Intell Hum Comput 11:2027–2040

    Article  Google Scholar 

  32. Carrio A, Vemprala S, Ripoll A, Saripalli S, Campoy P (2018) Drone detection using depth maps. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1034–1037

  33. Cavaliere D, Loia V, Saggese A, Senatore S, Vento M (2019) A human-like description of scene events for a proper uav-based video content analysis. Knowl-Based Syst 178:163–175

    Article  Google Scholar 

  34. Cazzato D, Cimarelli C, Sanchez-Lopez JL, Voos H, Leo M (2020) A survey of computer vision methods for 2d object detection from unmanned aerial vehicles. J Imag 6(8):78

    Article  Google Scholar 

  35. Cehovin Zajc L, Lukezic A, Leonardis A, Kristan M (2017) Beyond standard benchmarks: parameterizing performance evaluation in visual object tracking. In: Proceedings of the IEEE international conference on computer vision, pp 3323–3331

  36. Chamoso P, Raveane W, Parra V, González A (2014) Uavs applied to the counting and monitoring of animals. In: Ambient intelligence-software and applications. Springer, pp 71–80

  37. Chen L, Liu F, Zhao Y, Wang W, Yuan X, Zhu J (2020) Valid: a comprehensive virtual aerial image dataset. In: 2020 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2009–2016. https://doi.org/10.1109/ICRA40945.2020.9197186

  38. Chen PH, Lee CY (2018) Uavnet: an efficient obstacel detection model for uav with autonomous flight. In: 2018 international conference on intelligent autonomous systems (ICoIAS). IEEE, pp 217–220

  39. Chen X, Li Z, Yang Y, Qi L, Ke R (2020) High-resolution vehicle trajectory extraction and denoising from aerial videos. IEEE Trans Intell Transp Syst

  40. Chen Y, Liu L, Gong Z, Zhong P (2017) Learning cnn to pair uav video image patches. IEEE J Sel Topics Appl Earth Obs Remote Sens 10(12):5752–5768

    Article  Google Scholar 

  41. Chen Y, Wang Y, Lu P, Chen Y, Wang G (2018) Large-scale structure from motion with semantic constraints of aerial images. In: Chinese conference on pattern recognition and computer vision (PRCV). Springer, pp 347–359

  42. Choi SY, Cha D (2019) Unmanned aerial vehicles using machine learning for autonomous flight; state-of-the-art. Adv Robot 33:265–277

    Article  Google Scholar 

  43. Collins R, Zhou X, Teh SK (2005) An open source tracking testbed and evaluation web site. In: IEEE international workshop on performance evaluation of tracking and surveillance, vol 2, p 35

  44. Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97

    Article  Google Scholar 

  45. Dandois J, Olano M, Ellis E (2015) Optimal altitude, overlap, and weather conditions for computer vision uav estimates of forest structure. Remote Sens 7(10):13895–13920

    Article  Google Scholar 

  46. Daryanavard H, Harifi A (2018) Implementing face detection system on uav using raspberry pi platform. In: Iranian conference on electrical engineering (ICEE). IEEE, pp 1720–1723

  47. Davis N, Pittaluga F, Panetta K (2013) Facial recognition using human visual system algorithms for robotic and uav platforms. In: 2013 IEEE conference on technologies for practical robot applications (TePRA). IEEE, pp 1–5

  48. Deeb A, Roy K, Edoh KD (2020) Drone-based face recognition using deep learning. In: International conference on advanced machine learning technologies and applications. Springer, pp 197–206

  49. Dinh M, Morris B, Kim Y (2019) Uas-based object tracking via deep learning. In: 2019 IEEE 9th annual computing and communication workshop and conference (CCWC). IEEE, pp 0217–0275

  50. Du D, Qi Y, Yu H, Yang Y, Duan K, Li G, Zhang W, Huang Q, Tian Q (2018) The unmanned aerial vehicle benchmark: Object detection and tracking. In: Proceedings of the European conference on computer vision (ECCV), pp 370–386

  51. Du D, Zhu P, Wen L, Bian X, Ling H, Hu Q, Zheng J, Peng T, Wang X, Zhang Y, et al. (2019) Visdrone-sot2019: the vision meets drone single object tracking challenge results. In: Proceedings of the IEEE international conference on computer vision workshops

  52. Duarte D, Nex F, Kerle N, Vosselman G (2017) Towards a more efficient detection of earthquake induced facade damages using oblique uav imagery. Int Arch Photogramm Remote Sens Spatial Inf Sci 42:93

    Article  Google Scholar 

  53. Duarte D, Nex F, Kerle N, Vosselman G (2018) Multi-resolution feature fusion for image classification of building damages with convolutional neural networks. Remote Sens 10(10):1636

    Article  Google Scholar 

  54. Elharrouss O, Almaadeed N, Al-Maadeed S, Akbari Y (2019) Image inpainting: a review. Neural Process Lett 51:2007–2028. https://doi.org/10.1007/s11063-019-10163-0

  55. Elharrouss O, Almaadeed N, Al-Maadeed S, Bouridane A, Beghdadi A (2020) A combined multiple action recognition and summarization for surveillance video sequences. Appl Intell. https://doi.org/10.1007/s10489-020-01823-z

  56. Escalante H, Rodríguez-Sánchez S, Jiménez-Lizárraga M, Morales-Reyes A, De La Calleja J, Vazquez R (2019) Barley yield and fertilization analysis from uav imagery: a deep learning approach. Int J Remote Sens 40(7):2493–2516

  57. Fan H, Ling H (2019) Parallel tracking and verifying. IEEE Trans Image Process 28(8):4130–4144

  58. Gago J, Douthe C, Coopman R, Gallego P, Ribas-Carbo M, Flexas J, Escalona J, Medrano H (2015) Uavs challenge to assess water stress for sustainable agriculture. Agric Water Manag 153:9–19

    Article  Google Scholar 

  59. Giordan D, Hayakawa Y, Nex F, Remondino F, Tarolli P (2018) The use of remotely piloted aircraft systems (rpass) for natural hazards monitoring and management. Nat Hazards Earth Syst Sci 18(4):1079–1096

    Article  Google Scholar 

  60. Gonzalez L, Montes G, Puig E, Johnson S, Mengersen K, Gaston K (2016) Unmanned aerial vehicles (uavs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16(1):97

    Article  Google Scholar 

  61. Gray PC, Fleishman AB, Klein DJ, McKown MW, Bézy VS, Lohmann KJ, Johnston DW (2019) A convolutional neural network for detecting sea turtles in drone imagery. Methods Ecol Evol 10(3):345–355

    Google Scholar 

  62. Grigorev A, Liu S, Tian Z, Xiong J, Rho S, Feng J (2020) Delving deeper in drone-based person re-id by employing deep decision forest and attributes fusion. ACM Trans Multimed Comput Commun Appl (TOMM) 16(1):1–15

    Google Scholar 

  63. Hao C, Zhang X, Li Y, Huang S, Xiong J, Rupnow K, Hwu Wm, Chen D (2019) Fpga/dnn co-design: an efficient design methodology for iot intelligence on the edge. arXiv:1904.04421

  64. Henrio J, Nakashima T (2018) Anomaly detection in videos recorded by drones in a surveillance context. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 2503–2508

  65. Hochmair HH, Zielstra D (2015) Analysing user contribution patterns of drone pictures to the dronestagram photo sharing portal. J Spatial Sci 60(1):79–98

    Article  Google Scholar 

  66. Hsieh MR, Lin YL, Hsu WH (2017) Drone-based object counting by spatially regularized regional proposal network. In: Proceedings of the IEEE international conference on computer vision, pp 4145–4153

  67. Hsu HJ, Chen KT (2015) Face recognition on drones: issues and limitations. In: Proceedings of the first workshop on micro aerial vehicle networks, systems, and applications for civilian use. ACM, pp 39–44

  68. Hsu HJ, Chen KT (2017) Droneface: an open dataset for drone research. In: Proceedings of the 8th ACM on multimedia systems conference. ACM, pp 187–192

  69. Hu B, Yang H, Wang L, Chen S (2019) A trajectory prediction based intelligent handover control method in uav cellular networks. China Commun 16(1):1–14

    Article  Google Scholar 

  70. Huang C, Yang Z, Kong Y, Chen P, Yang X, Cheng KTT (2019) Learning to capture a film-look video with a camera drone. In: 2019 International conference on robotics and automation (ICRA). IEEE, pp 1871–1877

  71. Hussein AAM (2018) Control and communication systems for automated vehicles cooperation and coordination. PhD thesis, Universidad Carlos III de Madrid. https://e-archivo.uc3m.es/handle/10016/27674

  72. Ilyas N, Shahzad A, Kim K (2020) Convolutional-neural network-based image crowd counting: review, categorization, analysis, and performance evaluation. Sensors 20(1):43

    Article  Google Scholar 

  73. Jeon E, Choi K, Lee I, Kim H (2013) A multi-sensor micro uav based automatic rapid mapping system for damage assessment in disaster areas. ISPRS-Int Arch Photogramm Remote Sens Spatial Inf Sci 1(2):217–221

    Article  Google Scholar 

  74. Johnson P, Ricker B, Harrison S (2017) Volunteered drone imagery: challenges and constraints to the development of an open shared image repository. In: Proceedings of the 50th Hawaii International Conference on System Sciences. Available from: http://scholarspace.manoa.hawaii.edu/handle/10125/41396. Accessed 23 Feb 2017

  75. Kakooei M, Baleghi Y (2017) Fusion of satellite, aircraft, and uav data for automatic disaster damage assessment. Int J Remote Sens 38(8–10):2511–2534

    Article  Google Scholar 

  76. Kalka ND, Maze B, Duncan JA, O’Connor K, Elliott S, Hebert K, Bryan J, Jain AK (2018) Ijb–s: Iarpa janus surveillance video benchmark. In: 2018 IEEE 9th international conference on biometrics theory, applications and systems (BTAS). IEEE, pp 1–9

  77. Kalra I, Singh M, Nagpal S, Singh R, Vatsa M, Sujit P (2019) Dronesurf: benchmark dataset for drone-based face recognition

  78. Kamilaris A, van den Brink C, Karatsiolis S (2019) Training deep learning models via synthetic data: application in unmanned aerial vehicles. In: International conference on computer analysis of images and patterns. Springer, pp 81–90

  79. Kamilaris A, Prenafeta-Boldú FX (2018) Disaster monitoring using unmanned aerial vehicles and deep learning. arXiv:1807.11805

  80. Kanellakis C, Nikolakopoulos G (2017) Survey on computer vision for uavs: current developments and trends. J Intell Robot Syst 87(1):141–168

    Article  Google Scholar 

  81. Kang K, Belkhale S, Kahn G, Abbeel P, Levine S (2019) Generalization through simulation: integrating simulated and real data into deep reinforcement learning for vision-based autonomous flight. arXiv:1902.03701

  82. Kanistras K, Martins G, Rutherford MJ, Valavanis KP (2015) A survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: 2013 international cnference on unmanned aircraft systems (ICUAS), Atlanta, GA, 2013, pp 221–234. https://doi.org/10.1109/ICUAS.2013.6564694

  83. Karaduman M, Çınar A, Eren H (2019) Uav traffic patrolling via road detection and tracking in anonymous aerial video frames. J Intell Robot Syst, pp 1–16

  84. Kaufmann E, Loquercio A, Ranftl R, Dosovitskiy A, Koltun V, Scaramuzza D (2018) Deep drone racing: learning agile flight in dynamic environments. arXiv:1806.08548

  85. Ke R, Li Z, Kim S, Ash J, Cui Z, Wang Y (2017) Real-time bidirectional traffic flow parameter estimation from aerial videos. IEEE Trans Intell Transp Syst 18(4):890–901

    Article  Google Scholar 

  86. Ke R, Li Z, Tang J, Pan Z, Wang Y (2018) Real-time traffic flow parameter estimation from uav video based on ensemble classifier and optical flow. IEEE Trans Intell Transp Syst 99:1–11

    Google Scholar 

  87. Kellenberger B, Marcos D, Lobry S, Tuia D (2019) Half a percent of labels is enough: efficient animal detection in uav imagery using deep cnns and active learning. IEEE Trans Geosci Remote Sens 57(12):9524–9533

    Article  Google Scholar 

  88. Kellenberger B, Marcos D, Tuia D (2018) Best practices to train deep models on imbalanced datasets—a case study on animal detection in aerial imagery. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 630–634

  89. Kellenberger B, Marcos D, Tuia D (2018) Detecting mammals in uav images: best practices to address a substantially imbalanced dataset with deep learning. Remote Sens Environ 216:139–153

    Article  Google Scholar 

  90. Kellenberger B, Volpi M, Tuia D (2017) Fast animal detection in uav images using convolutional neural networks. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 866–869

  91. Kerle N, Nex F, Gerke M, Duarte D, Vetrivel A (2020) Uav-based structural damage mapping: a review. ISPRS Int J Geo-inf 9(1):14

    Article  Google Scholar 

  92. Korthals T, Kragh M, Christiansen P, Karstoft H, Jørgensen RN, Rückert U (2018) Multi-modal detection and mapping of static and dynamic obstacles in agriculture for process evaluation. Front Robot AI 5:28

    Article  Google Scholar 

  93. Kragh M, Christiansen P, Laursen M, Larsen M, Steen K, Green O, Karstoft H, Jørgensen R (2017) Fieldsafe: dataset for obstacle detection in agriculture. Sensors 17(11):2579

    Article  Google Scholar 

  94. Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Cehovin Zajc L, Vojir T, Hager G, Lukezic A, Eldesokey A, et al (2017) The visual object tracking vot2017 challenge results. In: Proceedings of the IEEE international conference on computer vision, pp 1949–1972

  95. Kuai Y, Wen G, Li D (2018) Multi-task hierarchical feature learning for real-time visual tracking. IEEE Sens J 19(5):1961–1968

    Article  Google Scholar 

  96. Kyrkou C, Plastiras G, Theocharides T, Venieris SI, Bouganis CS (2018) Dronet: efficient convolutional neural network detector for real-time uav applications. In: 2018 design, automation & test in Europe conference & exhibition (DATE). IEEE, pp 967–972

  97. Layne R, Hospedales TM, Gong S (2014) Investigating open-world person re-identification using a drone. In: European conference on computer vision. Springer, pp 225–240

  98. Lee SC (2016) A trajectory based event classification from uav videos and its evaluation framework. In: 2016 IEEE applied imagery pattern recognition workshop (AIPR). IEEE, pp 1–4

  99. Li D, Wen G, Kuai Y, Porikli F (2018) End-to-end feature integration for correlation filter tracking with channel attention. IEEE Signal Process Lett 25(12):1815–1819

    Article  Google Scholar 

  100. Li H, Shi Y, Zhang B, Wang Y (2018) Superpixel-based feature for aerial image scene recognition. Sensors 18(1):156

    Article  Google Scholar 

  101. Li W, Li H, Wu Q, Chen X, Ngan KN (2019) Simultaneously detecting and counting dense vehicles from drone images. IEEE Trans Ind Electron 66(12):9651–9662. https://doi.org/10.1109/TIE.2019.2899548

  102. Li Y, Hu W, Dong H, Zhang X (2019) Building damage detection from post-event aerial imagery using single shot multibox detector. Appl Sci 9(6):1128

    Article  Google Scholar 

  103. Li Y, Lin C, Li H, Hu W, Dong H, Liu Y (2020) Unsupervised domain adaptation with self-attention for post-disaster building damage detection. Neurocomputing 415:27–39

    Article  Google Scholar 

  104. Liu K, Mattyus G (2015) Fast multiclass vehicle detection on aerial images. IEEE Geosci Remote Sens Lett 12(9):1938–1942

    Article  Google Scholar 

  105. Liu Y, Yang F, Hu P (2020) Small-object detection in uav-captured images via multi-branch parallel feature pyramid networks. IEEE Access 8:145,740–145,750

    Article  Google Scholar 

  106. Long H, Chung Y, Liu Z, Bu S (2019) Object detection in aerial images using feature fusion deep networks. IEEE Access 7:30980–30990

    Article  Google Scholar 

  107. Long Y, Xia GS, Li S, Yang W, Yang MY, Zhu XX, Zhang L, Li, D (2020) Dirs: on creating benchmark datasets for remote sensing image interpretation. arXiv:2006.12485

  108. Loquercio A, Maqueda AI, del Blanco CR, Scaramuzza D (2018) Dronet: learning to fly by driving. IEEE Robot Autom Lett 3(2):1088–1095

    Article  Google Scholar 

  109. Lukežič A, Zajc LČ, Vojíř T, Matas J, Kristan M (2019) Performance evaluation methodology for long-term visual object tracking. arXiv:1906.08675

  110. Luna CVM (2013) Visual tracking, pose estimation, and control for aerial vehicles. Ph.D. thesis, Universidad Politécnica de Madrid

  111. Lyu Y, Vosselman G, Xia GS, Yilmaz A, Yang MY (2020) Uavid: a semantic segmentation dataset for uav imagery. ISPRS J Photogramm Remote Sens 165:108–119

    Article  Google Scholar 

  112. Majid Azimi S (2018) Shuffledet: real-time vehicle detection network in on-board embedded uav imagery. In: Proceedings of the European conference on computer vision (ECCV)

  113. Mandal M, Kumar LK, Vipparthi SK (2020) Mor-uav: a benchmark dataset and baselines for moving object recognition in uav videos. arXiv:2008.01699

  114. Mantegazza D, Guzzi J, Gambardella LM, Giusti A (2018) Vision-based control of a quadrotor in user proximity: mediated vs end-to-end learning approaches. arXiv:1809.08881

  115. Mantegazza D, Guzzi J, Gambardella LM, Giusti A (2019) Learning vision-based quadrotor control in user proximity. In: 2019 14th ACM/IEEE international conference on human-robot interaction (HRI). IEEE, pp 369–369

  116. Marcu A, Costea D, Licaret V, Pirvu M, Slusanschi E, Leordeanu M (2018) Safeuav: learning to estimate depth and safe landing areas for uavs from synthetic data. In: Proceedings of the European conference on computer vision (ECCV)

  117. Maria G, Baccaglini E, Brevi D, Gavelli M, Scopigno R (2016) A drone-based image processing system for car detection in a smart transport infrastructure. In: 2016 18th mediterranean electrotechnical conference (MELECON). IEEE, pp 1–5

  118. Maurya AK, Singh D, Singh K (2018) Development of fusion approach for estimation of vegetation fraction cover with drone and sentinel-2 data. In: IGARSS 2018-2018 IEEE international geoscience and remote sensing symposium. IEEE, pp 7448–7451

  119. Micheal AA, Vani K (2019) Automatic object tracking in optimized uav video. J Supercomput 75(8):4986–4999

  120. Minaeian S, Liu J, Son YJ (2015) Crowd detection and localization using a team of cooperative uav/ugvs. In: IIE annual conference. Proceedings, p. 595. Institute of industrial and systems engineers (IISE)

  121. Minaeian S, Liu J, Son YJ (2018) Effective and efficient detection of moving targets from a uav’s camera. IEEE Trans Intell Transp Syst 19(2):497–506

    Article  Google Scholar 

  122. Mliki H, Bouhlel F, Hammami M (2020) Human activity recognition from uav-captured video sequences. Pattern Recogn 100:107,140

    Article  Google Scholar 

  123. Mou L, Hua Y, Jin P, Zhu XX (2020) Era: a dataset and deep learning benchmark for event recognition in aerial videos. arXiv:2001.11394

  124. Mueller M., Sharma G, Smith N, Ghanem B (2016) Persistent aerial tracking system for uavs. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1562–1569

  125. Mueller M, Smith N, Ghanem B (2016) A benchmark and simulator for uav tracking. In: European conference on computer vision. Springer, pp 445–461

  126. Müller M, Casser V, Lahoud J, Smith N, Ghanem B (2018) Sim4cv: a photo-realistic simulator for computer vision applications. Int J Comput Vis 126(9):902–919

  127. Müller M, Casser V, Smith N, Michels DL, Ghanem B (2017) Teaching uavs to race using sim4cv. arXiv:1708.05884

  128. Muller M, Casser V, Smith N, Michels DL, Ghanem B (2018) Teaching uavs to race: end-to-end regression of agile controls in simulation. In: Proceedings of the European conference on computer vision (ECCV). https://doi.org/10.1007/978-3-030-11012-3_2

  129. Müller M, Li G, Casser V, Smith N, Michels DL, Ghanem B (2019) Learning a controller fusion network by online trajectory filtering for vision-based uav racing. arXiv:1904.08801

  130. Murray S (2017) Real-time multiple object tracking-a study on the importance of speed. arXiv:1709.03572

  131. Murugan D, Garg A, Singh D (2017) Development of an adaptive approach for precision agriculture monitoring with drone and satellite data. IEEE J Sel Topics Appl Earth Obs Remote Sens 10(12):5322–5328

    Article  Google Scholar 

  132. Najiya K, Archana M (2018) Uav video processing for traffic surveillence with enhanced vehicle detection. In: 2018 second international conference on inventive communication and computational technologies (ICICCT). IEEE, pp 662–668

  133. Nex F, Duarte D, Steenbeek A, Kerle N (2019) Towards real-time building damage mapping with low-cost uav solutions. Remote Sens 11(3):287

    Article  Google Scholar 

  134. Nex F, Remondino F, Gerke M, Przybilla HJ, Bäumker M, Zurhorst A (2015) Isprs benchmark for multi-platform photogrammetry. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci 2

  135. Ofli F, Meier P, Imran M, Castillo C, Tuia D, Rey N, Briant J, Millet P, Reinhard F, Parkan M et al (2016) Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big Data 4(1):47–59

    Article  Google Scholar 

  136. Oh S, Hoogs A, Perera A, Cuntoor N, Chen CC, Lee JT, Mukherjee S, Aggarwal J, Lee H, Davis L, et al (2011) A large-scale benchmark dataset for event recognition in surveillance video. In: CVPR 2011. IEEE, pp 3153–3160

  137. Okafor E, Schomaker L, Wiering MA (2018) An analysis of rotation matrix and colour constancy data augmentation in classifying images of animals. J Inf Telecommun 2(4):465–491

    Google Scholar 

  138. Okafor E, Smit R, Schomaker L, Wiering M (2017) Operational data augmentation in classifying single aerial images of animals. In: 2017 IEEE international conference on innovations in intelligent systems and applications (INISTA). IEEE, pp 354–360

  139. Oppenheim D, Edan Y, Shani G (2017) Detecting tomato flowers in greenhouses using computer vision. World Acad Sci Eng Technol Int J Comput Electr Autom Control Inf Eng 11(1):104–109

    Google Scholar 

  140. Oreifej O, Mehran R, Shah M (2010) Human identity recognition in aerial images. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 709–716

  141. Otto A, Agatz N, Campbell J, Golden B, Pesch E (2018) Optimization approaches for civil applications of unmanned aerial vehicles (uavs) or aerial drones: a survey. Networks 72(4):411–458

    MathSciNet  Article  Google Scholar 

  142. Pádua L, Vanko J, Hruška J, Adão T, Sousa JJ, Peres E, Morais R (2017) Uas, sensors, and data processing in agroforestry: a review towards practical applications. Int J Remote Sens 38(8–10):2349–2391

    Article  Google Scholar 

  143. Palossi D, Loquercio A, Conti F, Flamand E, Scaramuzza D, Benini L (2019) A 64mw dnn-based visual navigation engine for autonomous nano-drones. IEEE Internet Things J 6(5):8357–8371

  144. Perera AG, Al-Naji A, Law YW, Chahl J (2018) Human detection and motion analysis from a quadrotor uav. In: IOP conference series: materials science and engineering, vol 405. IOP Publishing, p 012003

  145. Perera AG, Law YW, Chahl J (2019) Drone-action: an outdoor recorded drone video dataset for action recognition. Drones 3(4):82

    Article  Google Scholar 

  146. Perreault H, Bilodeau GA, Saunier N, Gravel P (2019) Road user detection in videos. arXiv:1903.12049

  147. Perrin AF, Krassanakis V, Zhang L, Ricordel V, Perreira Da Silva M, Le Meur O (2020) Eyetrackuav2: a large-scale binocular eye-tracking dataset for uav videos. Drones 4(1):2

    Article  Google Scholar 

  148. Pestana J, Sanchez-Lopez JL, Campoy P, Saripalli S (2013) Vision based gps-denied object tracking and following for unmanned aerial vehicles. In: 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR). IEEE, pp 1–6

  149. Pestana J, Sanchez-Lopez JL, Saripalli S, Campoy P (2014) Computer vision based general object following for gps-denied multirotor unmanned vehicles. In: 2014 American control conference. IEEE, pp 1886–1891

  150. Pestana Puerta J (2017) Vision-based autonomous navigation of multirotor micro aerial vehicles. Ph.D. thesis, Industriales

  151. Plastiras G, Kyrkou C, Theocharides T (2018) Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing. In: Proceedings of the 12th international conference on distributed smart cameras. ACM, p 3

  152. Plastiras G, Terzi M, Kyrkou C, Theocharidcs T (2018) Edge intelligence: challenges and opportunities of near-sensor machine learning applications. In: 2018 IEEE 29th international conference on application-specific systems, architectures and processors (ASAP). IEEE, pp 1–7

  153. Puri A (2005) A survey of unmanned aerial vehicles (uav) for traffic surveillance. Department of Computer Science and Engineering, University of South Florida, Florida, pp 1–29

    Google Scholar 

  154. Qi Y, Wang D, Xie J, Lu K, Wan Y, Fu S (2019) Birdseyeview: aerial view dataset for object classification and detection. In: 2019 IEEE Globecom workshops (GC Wkshps). IEEE, pp 1–6

  155. Rahnemoonfar M, Dobbs D, Yari M et al (2019) Discountnet: discriminating and counting network for real-time counting and localization of sparse objects in high-resolution uav imagery. Remote Sens 11(9):1128

    Article  Google Scholar 

  156. Rakha T, Gorodetsky A (2018) Review of unmanned aerial system (uas) applications in the built environment: towards automated building inspection procedures using drones. Autom Constr 93:252–264

    Article  Google Scholar 

  157. Rey N, Volpi M, Joost S, Tuia D (2017) Detecting animals in african savanna with uavs and the crowds. Remote Sens Environ 200:341–351

    Article  Google Scholar 

  158. Rivas A, Chamoso P, González-Briones A, Corchado J (2018) Detection of cattle using drones and convolutional neural networks. Sensors 18(7):2048

    Article  Google Scholar 

  159. Robicquet A, Alahi A, Sadeghian A, Anenberg B, Doherty J, Wu E, Savarese S (2016) Forecasting social navigation in crowded complex scenes. arXiv:1601.00998

  160. Robicquet A, Sadeghian A, Alahi A, Savarese S (2016) Learning social etiquette: human trajectory understanding in crowded scenes. In: European conference on computer vision. Springer, pp 549–565

  161. Rozantsev A (2017) Vision-based detection of aircrafts and uavs. Tech. rep, EPFL

  162. Rozantsev A, Lepetit V, Fua P (2017) Detecting flying objects using a single moving camera. IEEE Trans Pattern Anal Mach Intell 39(5):879–892

    Article  Google Scholar 

  163. Ruchaud N (2015) Privacy protection filter using stegoscrambling in video surveillance. In: MediaEval 2015 Workshop, Wurzen, Germany

  164. Saif A, Prabuwono AS, Mahayuddin ZR (2014) Moving object detection using dynamic motion modelling from uav aerial images. Sci World J 2014. https://doi.org/10.1155/2014/890619

  165. Saqib M, Khan SD, Sharma N, Scully-Power P, Butcher P, Colefax A, Blumenstein M (2018) Real-time drone surveillance and population estimation of marine animals from aerial imagery. In: 2018 international conference on image and vision computing New Zealand (IVCNZ). IEEE, pp 1–6

  166. Sarwar F, Griffin A, Periasamy P, Portas K, Law J (2018) Detecting and counting sheep with a convolutional neural network. In: 2018 15th IEEE International conference on advanced video and signal based surveillance (AVSS). IEEE, pp 1–6

  167. Seymour A, Dale J, Hammill M, Halpin P, Johnston D (2017) Automated detection and enumeration of marine wildlife using unmanned aircraft systems (uas) and thermal imagery. Sci Rep 7:45,127

    Article  Google Scholar 

  168. Shao W, Kawakami R, Yoshihashi R, You S, Kawase H, Naemura T (2019) Cattle detection and counting in uav images based on convolutional neural networks. Int J Remote Sens 41(1):31–52

  169. Soleimani A, Nasrabadi NM (2018) Convolutional neural networks for aerial multi-label pedestrian detection. In: 2018 21st International conference on information fusion (FUSION). IEEE, pp 1005–1010

  170. Sommer L, Schuchert T, Beyerer J (2018) Comprehensive analysis of deep learning based vehicle detection in aerial images. IEEE Trans Circuits Syst Video Technol 29(9):2733

  171. Song WH, Jung HG, Gwak IY, Lee SW (2019) Oblique aerial image matching based on iterative simulation and homography evaluation. Pattern Recogn 87:317–331

    Article  Google Scholar 

  172. Stahl T, Pintea SL, van Gemert JC (2019) Divide and count: generic object counting by image divisions. IEEE Trans Image Process 28(2):1035–1044

    MathSciNet  MATH  Article  Google Scholar 

  173. Sykora-Bodie ST, Bezy V, Johnston DW, Newton E, Lohmann KJ (2017) Quantifying nearshore sea turtle densities: applications of unmanned aerial systems for population assessments. Sci Rep 7(1):17,690,690

    Article  Google Scholar 

  174. Tang Z, Liu X, Shen G, Yang B (2020) Penet: object detection using points estimation in aerial images. arXiv:2001.08247

  175. Tayara H, Soo KG, Chong KT (2018) Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network. IEEE Access 6:2220–2230

    Article  Google Scholar 

  176. Tian J, Li X, Duan F, Wang J, Ou Y (2016) An efficient seam elimination method for uav images based on wallis dodging and Gaussian distance weight enhancement. Sensors 16(5):662

    Article  Google Scholar 

  177. Tian Y, Sun A, Wang D (2018) Seam-line determination via minimal connected area searching and minimum spanning tree for uav image mosaicking. Int J Remote Sens 39(15–16):4980–4994

    Article  Google Scholar 

  178. Tijtgat N, Van Ranst W, Goedeme T, Volckaert B, De Turck F (2017) Embedded real-time object detection for a uav warning system. In: Proceedings of the IEEE international conference on computer vision, pp 2110–2118

  179. Touil DE, Terki N, Medouakh S (2019) Hierarchical convolutional features for visual tracking via two combined color spaces with svm classifier. SIViP 13(2):359–368

    Article  Google Scholar 

  180. Tripicchio P, Satler M, Dabisias G, Ruffaldi E, Avizzano CA (2015) Towards smart farming and sustainable agriculture with drones. In: 2015 International conference on intelligent environments. IEEE, pp 140–143

  181. Turner D, Lucieer A, Malenovskỳ Z, King D, Robinson S (2014) Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-uav over antarctic moss beds. Remote Sens 6(5):4003–4024

    Article  Google Scholar 

  182. Tzelepi M, Tefas A (2017) Human crowd detection for drone flight safety using convolutional neural networks. In: 2017 25th European signal processing conference (EUSIPCO). IEEE, pp 743–747

  183. Tzelepi M, Tefas A (2019) Graph embedded convolutional neural networks in human crowd detection for drone flight safety. IEEE Trans Emerg Topics Comput Intell

  184. Vaddi S, Kumar C, Jannesari A (2019) Efficient object detection model for real-time uav applications. arXiv:1906.00786

  185. van Gemert JC, Verschoor CR, Mettes P, Epema K, Koh LP, Wich S (2014) Nature conservation drones for automatic localization and counting of animals. In: European conference on computer vision. Springer, pp 255–270

  186. Vega A, Lin CC, Swaminathan K, Buyuktosunoglu A, Pankanti S, Bose P (2015) Resilient, uav-embedded real-time computing. In: 2015 33rd IEEE International conference on computer design (ICCD). IEEE, pp 736–739

  187. Vidal RG, Banerjee S, Grm K, Struc V, Scheirer WJ (2018) \(\text{Ug}^{2}\): A video benchmark for assessing the impact of image restoration and enhancement on automatic visual recognition. In: 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 1597–1606

  188. VidalMata RG, Banerjee S, RichardWebster B, Albright M, Davalos P, McCloskey S, Miller B, Tambo A, Ghosh S, Nagesh S, et al (2019) Bridging the gap between computational photography and visual recognition. arXiv:1901.09482

  189. Walha A, Wali A, Alimi AM (2015) Video stabilization with moving object detecting and tracking for aerial video surveillance. Multimed Tools Appl 74(17):6745–6767

    Article  Google Scholar 

  190. Wang D, Luo W (2019) Bayberry tree recognition dataset based on the aerial photos and deep learning model. J Global Change Data Discover 3(3):290–296

    Article  Google Scholar 

  191. Wang J, Feng Z, Chen Z, George S, Bala M, Pillai P, Yang SW, Satyanarayanan M (2018) Bandwidth-efficient live video analytics for drones via edge computing. In: 2018 IEEE/ACM symposium on edge computing (SEC). IEEE, pp 159–173

  192. Wang J, Feng Z, Chen Z, George S, Bala M, Pillai P, Yang SW, Satyanarayanan M (2019) Edge-based live video analytics for drones. IEEE Internet Comput 23(4):27–34

  193. Wang P, Jiao B, Yang L, Yang Y, Zhang S, Wei W, Zhang Y (2019) Vehicle re-identification in aerial imagery: dataset and approach. In: Proceedings of the IEEE international conference on computer vision, pp 460–469

  194. Wang T, Xiong J, Xu X, Shi Y (2019) Scnn: a general distribution based statistical convolutional neural network with application to video object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33. pp 5321–5328. https://doi.org/10.1609/aaai.v33i01.33015321

  195. Wang X, Cheng P, Liu X, Uzochukwu B (2018) Fast and accurate, convolutional neural network based approach for object detection from uav. In: IECON 2018-44th annual conference of the IEEE industrial electronics society. IEEE, pp 3171–3175

  196. Wang Y, Ding L, Laganiere R (2019) Real-time uav tracking based on psr stability. In: Proceedings of the IEEE international conference on computer vision workshops Seoul, Korea (South), 2019, pp 144-152. https://doi.org/10.1109/ICCVW.2019.00023

  197. Wang Y, Luo X, Ding L, Fu S, Hu S (2018) Collaborative model based uav tracking via local kernel feature. Appl Soft Comput 72:90–107

    Article  Google Scholar 

  198. Wang Z, Liu Z, Wang D, Wang S, Qi Y, Lu H (2019)Online single person tracking for unmanned aerial vehicles: benchmark and new baseline. In: ICASSP 2019–2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1927–1931

  199. Wei Z, Duan C (2020) Amrnet: chips augmentation in areial images object detection. arXiv:2009.07168

  200. Xiang TZ, Xia GS, Zhang L (2018) Mini-uav-based remote sensing: techniques, applications and prospectives. arXiv:1812.07770

  201. Xiaoyuan Y, Ridong Z, Jingkai W, Zhengze L (2019) Real-time object tracking via least squares transformation in spatial and fourier domains for unmanned aerial vehicles. Chin J Aeronaut 32(7):1716–1726

  202. Xu B, Wang W, Falzon G, Kwan P, Guo L, Chen G, Tait A, Schneider D (2020) Automated cattle counting using mask r-cnn in quadcopter vision system. Comput Electron Agric 171:105,300

    Article  Google Scholar 

  203. Xu B, Wang W, Falzon G, Kwan P, Guo L, Sun Z, Li C (2020) Livestock classification and counting in quadcopter aerial images using mask r-cnn. Int J Remote Sens, pp 1–22

  204. Xu X, Zhang X, Yu B, Hu XS, Rowen C, Hu J, Shi Y (2018) Dac-sdc low power object detection challenge for uav applications. arXiv:1809.00110

  205. Xu Y, Ou J, He H, Zhang X, Mills J (2016) Mosaicking of unmanned aerial vehicle imagery in the absence of camera poses. Remote Sens 8(3):204

    Article  Google Scholar 

  206. Xu Y, Yu G, Wang Y, Wu X, Ma Y (2016) A hybrid vehicle detection method based on viola-jones and hog+ svm from uav images. Sensors 16(8):1325

    Article  Google Scholar 

  207. Xu Z, Wu L, Zhang Z (2018) Use of active learning for earthquake damage mapping from uav photogrammetric point clouds. Int J Remote Sens 39(15–16):5568–5595

    Article  Google Scholar 

  208. Xue X, Li Y, Dong H, Shen Q (2018) Robust correlation tracking for uav videos via feature fusion and saliency proposals. Remote Sens 10(10):1644

    Article  Google Scholar 

  209. Xue X, Li Y, Shen Q (2018) Unmanned aerial vehicle object tracking by correlation filter with adaptive appearance model. Sensors 18(9):2751

    Article  Google Scholar 

  210. Yang MY, Liao W, Li X, Cao Y, Rosenhahn B (2019) Vehicle detection in aerial images. Photogramm Eng Remote Sens 85(4):297–304

    Article  Google Scholar 

  211. Yeh MC, Chiu HK, Wang JS (2016) Fast medium-scale multiperson identification in aerial videos. Multimed Tools Appl 75(23):16117–16133

    Article  Google Scholar 

  212. Yin X, Wang X, Yu J, Zhang M, Fua P, Tao D (2018) Fisheyerecnet: a multi-context collaborative deep network for fisheye image rectification. In: Proceedings of the European conference on computer vision (ECCV), pp 469–484

  213. Yu H, Li G, Zhang W, Huang Q, Du D, Tian Q, Sebe N (2020) The unmanned aerial vehicle benchmark: object detection, tracking and baseline. Int J Comput Vis 128(5):1141–1159

    Article  Google Scholar 

  214. Yuan C, Zhang Y, Liu Z (2015) A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can J For Res 45(7):783–792

    Article  Google Scholar 

  215. Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P (2014) Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (uav) and automatic 3d photo-reconstruction methods. Eur J Agron 55:89–99

    Article  Google Scholar 

  216. Zhang P, Zhong Y, Li X (2019) Slimyolov3: narrower, faster and better for real-time uav applications. In: Proceedings of the IEEE international conference on computer vision workshops

  217. Zhang R, Shao Z, Huang X, Wang J, Li D (2020) Object detection in uav images via global density fused convolutional network. Remote Sens 12(19):3140

    Article  Google Scholar 

  218. Zhang S, Zhang Q, Yang Y, Wei X, Wang P, Jiao B, Zhang Y (2020) Person re-identification in aerial imagery. IEEE Trans Multimed 23:281–291. https://doi.org/10.1109/TMM.2020.2977528

  219. Zhang W, Liu C, Chang F, Song Y (2020) Multi-scale and occlusion aware network for vehicle detection and segmentation on uav aerial images. Remote Sens 12(11):1760

    Article  Google Scholar 

  220. Zhang W, Song K, Rong X, Li Y (2018) Coarse-to-fine uav target tracking with deep reinforcement learning. IEEE Trans Autom Sci and Eng 16(4):1522–1530

  221. Zhu J, Chen S, Tu W, Sun K (2019) Tracking and simulating pedestrian movements at intersections using unmanned aerial vehicles. Remote Sens 11(8):925

    Article  Google Scholar 

  222. Zhu J, Sun K, Jia S, Li Q, Hou X, Lin W, Liu B, Qiu G (2018) Urban traffic density estimation based on ultrahigh-resolution uav video and deep neural network. IEEE J Sel Topics Appl Earth Obs Remote Sens 11(12):4968–4981

    Article  Google Scholar 

  223. Zhu P, Sun Y, Wen L, Feng Y, Hu Q (2020) Drone based rgbt vehicle detection and counting: a challenge. arXiv:2003.02437

  224. Zhu P, Wen L, Bian X, Ling H, Hu Q (2018) Vision meets drones: a challenge. arXiv:1804.07437

  225. Zhu, P., Wen, L., Du, D., Bian, X., Hu, Q., Ling, H (2020) Vision meets drones: past, present and future. arXiv:2001.06303

  226. Zhu P, Wen L, Du D, Bian X, Ling H, Hu Q, Wu H, Nie Q, Cheng H, Liu C, et al (2018) Visdrone-vdt2018: the vision meets drone video detection and tracking challenge results. In: Proceedings of the European conference on computer vision (ECCV)

  227. Zhu P, Zheng J, Du D, Wen L, Sun Y, Hu Q (2020) Multi-drone based single object tracking with agent sharing network. arXiv:2003.06994

  228. Zimmermann K, Matas J, Svoboda T (2009) Tracking by an optimal sequence of linear predictors. IEEE Trans Pattern Anal Mach Intell 31(4):677–692

    Article  Google Scholar 

Download references

Acknowledgements

This publication was made possible by NPRP Grant # NPRP8-140-2-065 from Qatar National Research Fund (a member of Qatar Foundation). The statement made herein are solely the responsibility of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Younes Akbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akbari, Y., Almaadeed, N., Al-maadeed, S. et al. Applications, databases and open computer vision research from drone videos and images: a survey. Artif Intell Rev (2021). https://doi.org/10.1007/s10462-020-09943-1

Download citation

Keywords

  • Drones
  • Survey article
  • Computer vision
  • Remote sensing
  • Navigation
  • Applications
  • Database
  • Open research