Skip to main content

Hierarchical visibility for guaranteed search in large-scale outdoor terrain


Searching for moving targets in large environments is a challenging task that is relevant in several problem domains, such as capturing an invader in a camp, guarding security facilities, and searching for victims in large-scale search and rescue scenarios. The guaranteed search problem is to coordinate the search of a team of agents to guarantee the discovery of all targets. In this paper we present a self-contained solution to this problem in 2.5D real-world domains represented by digital elevation models (DEMs). We introduce hierarchical sampling on DEMs for selecting heuristically the close to minimal set of locations from which the entire surface of the DEM can be guarded. Locations are utilized to form a search graph on which search strategies for mobile agents are computed. For these strategies schedules are derived which include agent paths that are directly executable in the terrain. Presented experimental results demonstrate the performance of the method. The practical feasibility of our approach has been validated during a field experiment at the Gascola robot training site where teams of humans equipped with iPads successfully searched for adversarial and omniscient evaders. The field demonstration is the largest-scale implementation of a guaranteed search algorithm to date.

This is a preview of subscription content, access via your institution.


  1. 1

    Barrière, L., Flocchini, P., Fraigniaud, P., & Santoro, N. (2002). Capture of an intruder by mobile agents. In: Proceedings of the fourteenth annual ACM symposium on parallel algorithms and architectures (pp. 200–209). New York, NY, USA: ACM Press.

  2. 2

    Bhattacharya S., Hutchinson S. (2010) On the existence of nash equilibrium for a visibility based pursuit evasion game. International Journal of Robotics Research, 29(7): 831–839

    Article  Google Scholar 

  3. 3

    Bienstock D., Seymour P. (1991) Monotonicity in graph searching. Journal of Algorithms 12(2): 239–245

    MathSciNet  MATH  Article  Google Scholar 

  4. 4

    Borie, R., Tovey, C., & Koenig, S. (2009). Algorithms and complexity results for pursuit-evasion problems. In: Proceedings of the international joint conference on artificial intelligence (pp. 59–66).

  5. 5

    Bresenham J. E. (1965) Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1): 25–30

    Article  Google Scholar 

  6. 6

    Bullo, F., Cortés, J., & Martínez, S. (2009). Distributed control of robotic networks. Applied mathematics series. Princeton University Press. Available at

  7. 7

    Burkard, R. E., & Cela E. (1998). Linear assignment problems and extensions. Technical report. Karl-Franzens Universitaet Graz & Graz University of Technology.

  8. 8

    Carraresi P., Gallo G. (1984) A multi-level bottleneck assignment approach to the bus drivers’ rostering problem. European Journal of Operational Research 16(2): 163–173

    MathSciNet  MATH  Article  Google Scholar 

  9. 9

    Choset H. (2001) Coverage for robotics—a survey of recent results. Annals of Mathematics and Artificial Intelligence 31(1–4): 113–126

    Article  Google Scholar 

  10. 10

    Dereniowski, D. (2010). Connected searching of weighted trees. Mathematical Foundations of Computer Science, pp. 330–341.

  11. 11

    Deutscher, J., Davison, A., & Reid, I. (2001). Automatic partitioning of high dimensional search spaces associated with articulated body motion capture. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001 (Vol. 2, pp. II-669–II-676). doi:10.1109/CVPR.2001.991028.

  12. 12

    Dornhege, C., & Kleiner, A. (2007). Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS) (pp. 3005–3011). San Diego, CA.

  13. 13

    Elkan, C. (1993). The paradoxical success of fuzzy logic. In: Proceedings of the eleventh national conference on artificial intelligence (pp. 698–703). Menlo Park, CA.

  14. 14

    Fan, M., Tang, M., & Dong, J. (2003). A review of real-time terrain rendering techniques. In: Proceedings of the 8th international conference on computer supported cooperative work in design, 2004 (Vol. 1, pp. 685–691). IEEE.

  15. 15

    Fomin F. V., Thilikos D. M. (2008) An annotated bibliography on guaranteed graph searching. Theoretical Computer Science 399(3): 236–245

    MathSciNet  MATH  Article  Google Scholar 

  16. 16

    Gerkey B. P., Thrun S., Gordon G. (2005) Parallel stochastic hill-climbing with small teams. Multi-Robot Systems: From Swarms to Intelligent Automata 3: 65–77

    Article  Google Scholar 

  17. 17

    Guibas L. J., Latombe J.-C., LaValle S. M., Lin D., Motwani R. (1999) A visibility-based pursuit-evasion problem. International Journal of Computational Geometry and Applications 9: 471–494

    MathSciNet  Article  Google Scholar 

  18. 18

    Hollinger G., Kehagias A., Singh S. (2010) GSST: Anytime guaranteed search. Autonomous Robots 29(1): 99–118

    Article  Google Scholar 

  19. 19

    Ishida, T., & Korf, R. E. (1991). Moving target search. In: Proceedings of the international joint conference on artificial intelligence (pp. 204–210). Citeseer.

  20. 20

    Jonker R., Volgenant A. (1987) A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4): 325–340

    MathSciNet  MATH  Article  Google Scholar 

  21. 21

    Karp R.M. (1972) Reducibility among combinatorial problems. In: Miller R., Thatcher J. (eds) Complexity of computer computations. Plenum Press, New York

    Google Scholar 

  22. 22

    Kehagias, A., Hollinger, G., & Gelastopoulos, A. (2009). Searching the nodes of a graph: Theory and algorithms. Technical report. ArXiv Repository 0905.3359 [cs.DM]. Carnegie Mellon University.

  23. 23

    Kleiner A., Dornhege C. (2007) Real-time localization and elevation mapping within urban search and rescue scenarios. Journal of Field Robotics 24(8–9): 723–745

    Article  Google Scholar 

  24. 24

    Koenderink J. J., Doorn A. J. (1979) The internal representation of solid shape with respect to vision. Biological cybernetics 32(4): 211–216

    MATH  Article  Google Scholar 

  25. 25

    Koenig, S., Likhachev, M., & Sun, X. (2007). Speeding up moving-target search. In: Proceedings of the 6th international joint conference on autonomous agents and multiagent systems (pp. 1–8). ACM.

  26. 26

    Kolling, A., & Carpin, S. (2008). Extracting surveillance graphs from robot maps. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2323–2328).

  27. 27

    Kolling, A., & Carpin, S. (2008). Multi-robot surveillance: An improved algorithm for the Graph-Clear problem. In: Proceedings of the IEEE international conference on robotics and automation (pp. 2360–2365).

  28. 28

    Kolling, A., & Carpin, S. (2009). On weighted edge-searching. Technical report 01. Merced: School of Engineering, University of California.

  29. 29

    Kolling A., Carpin S. (2010) Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics 26(1): 32–47

    Article  Google Scholar 

  30. 30

    LaPaugh A. S. (1993) Recontamination does not help to search a graph. Journal of the ACM 40(2): 224–245

    MathSciNet  MATH  Article  Google Scholar 

  31. 31

    Lazebnik, S. (2001). Visibility-based pursuit-evasion in three-dimensional environments. Technical report. University of Illinois at Urbana-Champaign.

  32. 32

    Lewis, M., Kolling, A., Kleiner, A., & Sycara, K. (2010). Pursuit-evasion in 2.5d based on team- visibility. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4610–4616).

  33. 33

    Megiddo N., Hakimi S. L., Garey M. R., Johnson D. S., Papadimitriou C. H. (1988) The complexity of searching a graph. Journal of the ACM 35(1): 18–44

    MathSciNet  MATH  Article  Google Scholar 

  34. 34

    Metea, M., & Tsai, J. (1987, March). Route planning for intelligent autonomous land vehicles using hierarchical terrain representation. In: Proceedings of 1987 IEEE international conference on robotics and automation (Vol. 4, pp. 1947–1952).

  35. 35

    Moldenhauer, C., & Sturtevant, N. R. (2009). Evaluating strategies for running from the cops. In: Proceedings of the 21st international joint conference on artificial intelligence (pp. 584–589). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

  36. 36

    Moors, M., Röhling, T., & Schulz, D. (2005). A probabilistic approach to coordinated multi-robot indoor surveillance. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3447–3452).

  37. 37

    Parsons T. D. (1976) Pursuit-evasion in a graph. In: Alavi Y., Lick D. R. (eds) Theory and applications of graphs. Springer, Berlin/Heidelberg, pp 426–441

    Chapter  Google Scholar 

  38. 38

    Sachs S., Rajko S., LaValle S. M. (2004) Visibility-based pursuit-evasion in an unknown planar environment. The International Journal of Robotics Research 23(1): 3–26

    Article  Google Scholar 

  39. 39

    Samet H. (1990) The design and analysis of spatial data structures. Addison-Wesley Pub (Sd), Reading

    Google Scholar 

  40. 40

    Shermer T. (1992) Recent results in art galleries. Proceedings of the IEEE 80(9): 1384–1399

    Article  Google Scholar 

  41. 41

    Simov B., Slutzki G., LaValle S. M. (2009) Clearing a polygon with two 1-searchers. International Journal of Computational Geometry and Applications 19(1): 59–92

    MathSciNet  MATH  Article  Google Scholar 

  42. 42

    Steder, B. (2010). Freiburg campus LiDAR data.

  43. 43

    Sturtevant, N., & Buro, M. (2005). Partial pathfinding using map abstraction and refinement. In: Proceedings of the 20th national conference on artificial intelligence (Vol. 3, pp. 1392–1397). AAAI Press.

  44. 44

    Suzuki I., Yamashita M. (1992) Searching for a mobile intruder in a polygonal region. SIAM Journal on Computing 21(5): 863–888

    MathSciNet  MATH  Article  Google Scholar 

  45. 45

    Tovar, B., & LaValle, S. M. (2006). Visibility-based pursuit-evasion with bounded speed. In: Proceedings of the workshop on algorithmic foundations of robotics (pp. 475–489).

  46. 46

    Tutte W. T. (2001) Graph theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  47. 47

    U.S. Geological Survey (USGS). (2010). U.S. Geological Survey (USGS).

  48. 48

    World Bank ImageCat Inc. (2010). RIT Haiti earthquake LiDAR.

  49. 49

    Yang, B., Dyer, D., & Alspach B. (2004). Sweeping graphs with large clique number. Lecture notes in computer science (pp. 908–920).

Download references

Author information



Corresponding author

Correspondence to A. Kleiner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kleiner, A., Kolling, A., Lewis, M. et al. Hierarchical visibility for guaranteed search in large-scale outdoor terrain. Auton Agent Multi-Agent Syst 26, 1–36 (2013).

Download citation


  • Guaranteed search
  • Pursuit-evasion
  • Exploration
  • Task allocation
  • Path planning
  • Moving target search
  • Human–robot-interaction
  • HRI