Litterfall seasonal dynamics and leaf-litter turnover in cocoa agroforests established on past forest lands or savannah

Abstract

Nutrient cycling in cocoa agroforestry systems (cAFS) is complex and poorly understood. To better understand the mass flow of carbon and nutrients into the soil sub-system under various contexts we quantified the mass flow of litterfall, its composition and seasonal variations in different agroforestry systems in Bokito (Central Cameroon). We studied litterfall dynamics and in situ leaf-litter cycling of cAFS established on past forest lands (F-cAFS) and savannah (S-cAFS). We also studied the decomposition of cocoa and associated tree leaf-litter in litterbags. Local secondary semi-deciduous forests were included as control. Annual litterfall in full-grown cAFS (> 15 years old) was high (9.4 Mg ha−1 y−1) and represented ca. 67% of litterfall in control forests. In full-grown cAFS, associated tree leaf-litter contributed to litterfall the most and ranged between 60 and 70% of the total amount recorded (6.3 Mg ha−1 y−1). The quantities and dynamics of the litter components monitored were similar in full-grown S- and F-cAFS. The microclimate was best buffered in forests and least buffered in young S-cAFS but could not be linked to leaf-litter decomposition. Forest leaf litterfall was higher and tended to cycle faster than total leaf-litter of cAFS, whose decomposition appeared limited by cocoa leaf-litter quality. Our study underlines (i) the critical contribution of associated trees to the nutrient cycle of agroecosystems established on poor soils and, (ii) the ability of farmers to channel associated tree communities towards similar functioning despite different past land-uses.

This is a preview of subscription content, access via your institution.

Fig.1
Fig.2
Fig.3
Fig. 4

References

  1. Abdulai I, Jassogne L, Graefe S, Asare R, Van Asten P, Läderach P, Vaast P (2018) Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana. PLoS ONE. https://doi.org/10.1371/journal.pone.0195777

    Article  PubMed  PubMed Central  Google Scholar 

  2. Addicott FT (1978) Abscission strategies in the behavior of tropical trees. In: Tomlinson PB, Zimmermann MH (eds) Tropical Trees as Living Systems. Cambridge Univ, Press, pp 381–398

    Google Scholar 

  3. Addinsoft (2019). XLStat version 2019 3.1. Available at: http://www.xlstat.com. Addinsoft Inc. Paris, France

  4. Afolayan O, Oderinde F (2018) Evaluation of deterioration index in soil nutrients due to cultivation of different cocoa species in southwest Nigeria. Journal of Applied Sciences and Environmental Management 22:547–552

    CAS  Article  Google Scholar 

  5. Almeida A-A, Valle RR (2007) Ecophysiology of the cacao tree. Braz J Plant Physiol 19:425–448

    Article  Google Scholar 

  6. Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  7. Bílá K, Moretti M, de Bello F, Dias ATC, Pezzatti GB, Van Oosten AR, Berg MP (2014) Disentangling community functional components in a litter-macrodetritivore model system reveals the predominance of the mass ratio hypothesis. Ecology Evol 4:408–416

    Article  Google Scholar 

  8. Boyer J (1972) Evolution saisonnière de la production de litière et de la décomposition des feuilles dans une cacaoyère camerounaise. 4ème conférence internationale sur les recherches cacaoyères, St Augustine, Trinidad

  9. Camenzind T, Hättenschwiler S, Treseder KK, Lehmann A, Rillig MC (2018) Nutrient limitation of soil microbial processes in tropical forests. Ecol Monogr 88:4–21

    Article  Google Scholar 

  10. Costa PMO, de Araújo MAG, de Souza-Motta CM, Malosso E (2017) Dynamics of leaf litter and soil respiration in a complex multistrata agroforestry system, Pernambuco, Brazil. Environ Dev Sustain 19:1189–1203

    Article  Google Scholar 

  11. Cuchietti A, Marcotti E, Gurvich DE, Cingolani AM, Pérez Harguindeguy N (2014) Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. Appl Soil Ecol 82:44–51

    Article  Google Scholar 

  12. Dawoe EK, Isaac ME, Quashie-Sam J (2010) Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant Soil 330:55–64

    CAS  Article  Google Scholar 

  13. Elangwe HN (1979) Carte géologique de la République du Cameroun. Ministère des mines de l’eau et de l’énergie de la République du Cameroun

  14. Finerty GE, de Bello F, Bílá K, Berg MP, Dias ATC, Pezzatti GB, Moretti M (2016) Exotic or not, leaf trait dissimilarity modulates the effect of dominant species on mixed litter decomposition. J Ecol 104:1400–1409

    Article  Google Scholar 

  15. Fontes AG, Gama-Rodrigues AC, Gama-Rodrigues EF, Sales MVS, Costa MG, Machado RCR (2014) Nutrient stocks in litterfall and litter in cocoa agroforests in Brazil. Plant Soil 383:313–335

    CAS  Article  Google Scholar 

  16. Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630

    Article  Google Scholar 

  17. Hartemink AE (2005) Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A review. In: Sparks DL (ed) Advances in Agronomy, vol 86. Elsevier Academic Press Inc, San Diego, pp 227–253

    Google Scholar 

  18. Isaac ME, Gordon AM, Thevathasan N, Oppong SK, Quashie-Sam J (2005) Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agrofor Syst 65:23–31

    Article  Google Scholar 

  19. Jagoret P (2011) Analyse et évaluation de systèmes agroforestiers complexes sur le long terme: Application aux systèmes de culture à base de cacaoyer au Centre Cameroun. Montpellier SupAgro, Montpellier, p 288

    Google Scholar 

  20. Jagoret P, Michel-Dounias I, Snoeck D, Ngnogué H, Malézieux E (2012) Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agrofor Syst 86:493–504

    Article  Google Scholar 

  21. Jagoret P, Kwesseu J, Messie C, Michel-Dounias I, Malézieux E (2014) Farmers’ assessment of the use value of agrobiodiversity in complex cocoa agroforestry systems in central Cameroon. Agrofor Syst 88:983–1000

    Article  Google Scholar 

  22. Jagoret P, Snoeck D, Bouambi E, Ngnogue HT, Nyassé S, Saj S (2018) Rehabilitation practices that shape cocoa agroforestry systems in Central Cameroon: key management strategies for long-term exploitation. Agrofor Syst 92:1185–1199

    Article  Google Scholar 

  23. Jezeer RE, Verweij PA, Santos MJ, Boot RGA (2017) Shaded coffee and cocoa – double dividend for biodiversity and small-scale farmers. Ecol Econ 140:136–145

    Article  Google Scholar 

  24. Kumar BM (2007) Litter dynamics in plantation and agroforestry systems of the tropics-a review of observations and methods. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry, CRC Press, Boca Raton. Fl, USA, pp 181–216

    Google Scholar 

  25. Lahive F, Hadley P, Daymond AJ (2019) The physiological responses of cacao to the environment and the implications for climate change resilience. A Rev Agrozn Sustain Dev 39(1):22

    Google Scholar 

  26. Lian Y, Zhang Q (1998) Conversion of a natural broad-leafed evergreen forest into pure and mixed plantation forests in a subtropical area: effects on nutrient cycling. Can J For Res 28:1518–1529

    Article  Google Scholar 

  27. Martius C, Hofer H, Garcia MVB, Rombke J, Hanagarth W (2004) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 68:137–154

    CAS  Article  Google Scholar 

  28. Mortimer R, Saj S, David C (2018) Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor Syst 92:1639–1657

    Article  Google Scholar 

  29. Muller-Landau HC, Wright SJ (2010) Litterfall Monitoring Protocol. CTFS Global Forest Carbon Research Initiative, Smithsonian Institute, Washington DC, USA

    Google Scholar 

  30. Muoghalu JI, Odiwe AI (2011) Litter production and decomposition in cacao (Theobroma cacao) and kolanut (cola nitida) plantations. Ecotropica 17:79–90

    Google Scholar 

  31. Niether W, Armengot L, Andres C, Schneider M, Gerold G (2018) Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L) production systems. Ann For Sci. 75(2):38

    Article  Google Scholar 

  32. Nijmeijer A, Lauri P-E, Harmand J-M, Freschet GT, Essobo Nieboukaho J-D, Fogang PK, Enock S, Saj S (2019a) Long-term dynamics of cocoa agroforestry systems established on lands previously occupied by savannah or forests. Agr Ecosyst Environ 275:100–111

    Article  Google Scholar 

  33. Nijmeijer A, Lauri P-E, Harmand J-M, Saj S (2019b) Carbon dynamics in cocoa agroforestry systems in Central Cameroon: afforestation of savannah as a sequestration opportunity. Agrofor Syst 93:851–868

    Article  Google Scholar 

  34. Ofori-Frimpong K (2007) Shaded versus un-shaded cocoa: implications on litter fall, decomposition, soil fertility and cocoa pod development. Symposium on multistrata agrforestry systems with perenial crops, CATIE Turrialba, Costa Rica

    Google Scholar 

  35. Ofori-Frimpong K, Rowell DL (1999) The decomposition of cocoa leaves and their effect on phosphorus dynamics in tropical soil. Eur J Soil Sci 50:165–172

    Article  Google Scholar 

  36. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61(3):167

    Article  Google Scholar 

  37. Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22(15–16):1193–1200

    CAS  PubMed  Article  Google Scholar 

  38. PROTA (2020) Plant Resources of Tropical Africa. PROTAbase. Available at: www.prota4u.org. Consulted in May. 2020.

  39. Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole-community litter quality and decomposition following land use change. Funct Ecol 21:1016–1026

    Article  Google Scholar 

  40. Saj S, Jagoret P, Todem Ngogue H (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor Syst 87:1309–1320

    Article  Google Scholar 

  41. Saj S, Durot C, Mvondo-Sakouma K, Tayo Gamo K, Avana-Tientcheu M-L (2017) Contribution of associated trees to long-term species conservation, carbon storage and sustainability: a functional analysis of tree communities in cacao plantations of Central Cameroon. Int J Agric Sustain 15:282–302

    Article  Google Scholar 

  42. Sauvadet M, Saj S, Freschet GT, Essobo J-D, Enock S, Becquer T, Tixier P, Harmand J-M (2020) Cocoa agroforest multifunctionality and soil fertility explained by shade tree litter traits. J Appl Ecol 57:476–487

    CAS  Article  Google Scholar 

  43. Schroth G, Lehmann J, Rodrigues MRL, Barros E, Macedo JLV (2001) Plant-soil interactions in multistrata agroforestry in the humid tropics. Agrofor Syst 53:85–102

    Article  Google Scholar 

  44. Schroth G, Jeusset A, Gomes AdS, Florence CT, Coelho NAP, Faria D, Läderach P (2016) Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitig Adapt Strat Glob Change 21:67–80

    Article  Google Scholar 

  45. Singh K, Kushwaha C (2006) Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India. Ann Bot 97:265–276

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Songwe NC, Fasehun FE, Okali DUU (1988) Litterfall and productivity in a tropical rain forest, Southern Baakundu Forest Reserve, Cameroon. J Trop Ecol 4:25–37

    Article  Google Scholar 

  47. Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein SR, Guhardja E, Harteveld M, Hertel D, Hohn P, Kappas M, Kohler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Nat Acad Sci 104(12):4973–4978

    CAS  PubMed  Article  Google Scholar 

  48. Tripathi SK, Singh KP (1994) Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J Appl Ecol 31:109–124

    Article  Google Scholar 

  49. Valentini CMA, Sanches L, Paula SR, de GL Vourlitis NJ Souza de OB Pinto Jr LF Almeida de, (2008) Soil respiration and aboveground litter dynamics of a tropical transitional forest in northwest Mato Grosso. Brazil J Geophysical Res Biogeosciences 113(1):11

    Google Scholar 

  50. Van Vliet J, Slingerland M, Giller K (2015) Mineral nutrition of cocoa: a review. Wageningen University and Research Centre, Wageningen, p 57

    Google Scholar 

  51. Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  52. Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin K-C, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabará MG, Salamon J-A, Swift MJ, Varela A, Vasconcelos HL, White D, Zou X (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14(11):2661–2677

    Article  Google Scholar 

  53. Zhang H, Yuan W, Dong W, Liu S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity 20:240–247

    CAS  Article  Google Scholar 

  54. Zhong Z, Zhang X, Wang X, Dai Y, Chen Z, Han X, Yang G, Ren C, Wang X (2020) C:N: P stoichiometries explain soil organic carbon accumulation during afforestation. Nutr Cycl Agroecosyst 117:243–259

    CAS  Article  Google Scholar 

Download references

Aknowledgements

This study was supported by the STRADIV (n°1405-018; Agropolis Fondation) project, the CIRAD, the ICRAF Yaoundé and the IRAD. This research was conducted within the “DP Agroforestry Cameroon” Research and Training Platform and within the framework of the CGIAR Research Program on Forests, Trees and Agroforestry (FTA). We would like to thank A. Agoume and J.P. Bidias, our field assistants in Bokito, for their contribution to this study. We would also like to thank L. Defaye for her kind revision of the English language of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephane Saj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Mean vegetation characteristics of the cAFS and forest plots studied. F-cAFS: Cocoa agroforestry system established on forest lands. S-cAFS: Cocoa agroforestry system established on savannah. > 15 years: system over 15 years old. [0–15]: system under 16 years old. The letters after the means show significant differences (p < 0.05) after the appropriate post-hoc test (one-way ANOVA or Kruskal–Wallis). Numbers in grey show standard errors (SE). “ind”: individuals.

  S–cAFS[0–15] S–cAFS[> 15] F–cAFS[0–15] F–cAFS[> 15] Forest
Mean SE Mean SE Mean SE Mean SE Mean SE
Density (ind ha−1) Cocoa trees 1181a 484 1172a 364 1048a 383 1288a 449   
Small trees(< 30 cm DBH) 175bc 120 71c 55 219b 161 166bc 91 533a 88
Large trees(≥ cm DBH) 33b 25 40b 13 54ab 34 35b 10 76a 31
Musa spp. 91 106 15 18 121 173 84 51   
Oil palm 8ab 9 3b 5 2b 3 3b 4 21a 14
Basal area (m2 ha−1) Cocoa trees 2.0b 2.2 8.4a 1.7 8.4a 1.7 8.7a 3.7   
Small trees(< 30 cm DBH) 1.5b 1.3 1.8b 1.3 1.8b 1.3 2.7b 2.5 12.9a 15.8
Large trees(≥ 30 cm DBH) 4.7b 4.8 16.6ab 12.6ab 16.1ab 10.4 20.1ab 11.6 23.6a 6.6
Height (m) Cocoa trees 2.2c 1.4 4.8a 0.8 3.2bc 2.0 4.7ab 0.7   
Small trees(< 30 cm DBH) 7.4 2.1 9.6 2.9 9.6 1.9 8.4 1.4 8.1 2.2
Large trees(≥ 30 cm DBH) 13.2b 4.0 19.5ab 5.9 20.4ab 3.8 22.6a 5.2 23.1a 3.8
Shanon index of associated trees 1.621b 0.650 1.736b 0.257 1.914b 0.601 1.650 0.249 2.727a 0.173

Appendix B

Sørensen indices comparing tree beta diversity between plots. F-cAFS: Cocoa agroforestry system established on forest lands. S-cAFS: Cocoa agroforestry system established on savannah.

Sϕrensen index
Full grown F- versus S-cAFS 0.628
Full grown S-cAFS versus forest 0.478
Full grown F-cAFS versus forest 0.646

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saj, S., Nijmeijer, A., Nieboukaho, JD.E. et al. Litterfall seasonal dynamics and leaf-litter turnover in cocoa agroforests established on past forest lands or savannah. Agroforest Syst (2021). https://doi.org/10.1007/s10457-021-00602-0

Download citation

Keywords

  • Agroforestry
  • Leaf-litter cycling
  • Litterfall dynamics
  • Litterbag decomposition
  • Microclimate
  • Theobroma cacao