Climate change impacts on potential distribution of multipurpose agro-forestry species: Argania spinosa (L.) Skeels as case study

  • Said Moukrim
  • Said Lahssini
  • Mouhssine Rhazi
  • Hicham Mharzi Alaoui
  • Abdelkader Benabou
  • Imane Wahby
  • Mohammed El Madihi
  • Moustapha Arahou
  • Laila Rhazi


Climate change is one of the extreme factors that threatens biodiversity and affects all organisms and their habitat. Agro-silvopastoral systems with known economic value experience dual pressure due to overexploitation and loss of habitat from rapid climate change effects. Both threats are serious if not managed properly. One strategy for long-term conservation of valuable species and their habitat under changing climate is to identify locations that may sustain suitable habitat conditions for those species. For the argan tree (endemic of Morocco) evaluated in this study, we successfully modeled the habitat suitability of this species for the current and future climate change scenarios (2050 and 2070) by using the Maximum Entropy approach. Predicted future ranges of suitable habitat show that they are site-specific and seem to be highly dependent on climate. The habitat suitability will reduce under each of the future climate scenario (more than 32% of current suitable area will be unsuitable in the future), which tend to have negative consequences for argan ecosystem conservation and provision of functions and services. Given this, predictive maps of suitable habitat elaborated in this study present a powerful tool to include future climate variability in the existing and future restoration and conservation strategies of this valuable agroforestry system.


Argan Agro-silvopastoral Bioclimatic variables Climate change MaxEnt Morocco Species distribution modelling 



We thank forest manager for providing valuable field assistance and support. In addition, we thank anonymous reviewers and editor for providing helpful comments. Finally, we thank Mrs. Amina Sena and Dr. Adnane Labbaci for their proofreading.

Supplementary material

10457_2018_232_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
10457_2018_232_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)


  1. Alaoui K (2009) L’arganier ou la richesse d’un patrimoine. Phytothérapie 7:150–156. CrossRefGoogle Scholar
  2. Alba-Sánchez F, López-Sáez JA, Nieto-Lugilde D, Svenning J-C (2015) Long-term climate forcings to assess vulnerability in North Africa dry argan woodlands. Appl Veg Sci 18:283–296. CrossRefGoogle Scholar
  3. Aouragh M (2012) Dynamique du « paysage-arganeraie » dans le Sud-ouest marocain. Apport des données de télédétection et perspectives de les intégrer dans un SIG. Université Paris Sorbonne-ParisGoogle Scholar
  4. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Change Biol 11:1504–1513. CrossRefGoogle Scholar
  5. Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19. CrossRefGoogle Scholar
  6. Austin MP, Belbin L, Meyers JA et al (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol Model 199:197–216. CrossRefGoogle Scholar
  7. Benabid A (2000) Flore et écosystèmes du Maroc: Evaluation et préservation de la biodiversitéGoogle Scholar
  8. Benchekroun F, Buttoud G (1989) L’arganeraie dans l’économie rurale du sud-ouest marocain. For Méditerranéenne 2:127–136.
  9. Charrouf Z, Guillaume D (2010) Should the amazigh diet (regular and moderate argan-oil consumption) have a beneficial impact on human health? Crit Rev Food Sci Nutr 50:473–477. CrossRefPubMedGoogle Scholar
  10. De Candolle AP (1844) Prodromus systematis naturalis regni vegetabilis sive enumeratio contracta ordinum, generum specierumque plantarum huc usque cognitarum, juxta methodi naturalis normas digesta, Volume 8 (Latin Edition), Sumptibus Fortin, Masson et Sociorum. ParisGoogle Scholar
  11. Driouech F, Déqué M, Sánchez-Gómez E (2010) Weather regimes—Moroccan precipitation link in a regional climate change simulation. Glob Planet Change 72:1–10. CrossRefGoogle Scholar
  12. Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77. CrossRefGoogle Scholar
  13. Elith J, Graham CH, P Anderson R, et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151Google Scholar
  14. Emberger L (1925) Le domaine naturel de l’arganier. Bull Soc Bot Fr 72:770–774. CrossRefGoogle Scholar
  15. Emberger L (1955) Une classification biogéographique des climats, Recueil des Travaux des Laboratoires de Botanique, Géologie et Zoologie de la Faculté des Sciences de L’Université de Montpellier, Série BotaniqueGoogle Scholar
  16. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874. CrossRefGoogle Scholar
  17. Feeley KJ, Silman MR (2011) Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers Distrib 17:1132–1140. CrossRefGoogle Scholar
  18. Fennane M, Ibn Tattou M (2012) Statistiques et commentaires sur l’inventaire actuel de la flore vasculaire du Maroc. Bull de l’Inst Sci Rabat Sect Sci de la Vie 34:1–9Google Scholar
  19. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. CrossRefGoogle Scholar
  20. Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeGoogle Scholar
  21. Gharby S, Harhar H, El Monfalouti H et al (2011) Chemical and oxidative properties of olive and argan oils sold on the Moroccan market. A comparative study. Mediterr J Nutr Metab 5:31–38. CrossRefGoogle Scholar
  22. Graham CH, Elith J, Hijmans RJ et al (2007) The influence of spatial errors in species occurrence data used in distribution models: spatial error in occurrence data for predictive modelling. J Appl Ecol 45:239–247. CrossRefGoogle Scholar
  23. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. CrossRefGoogle Scholar
  24. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. CrossRefGoogle Scholar
  25. Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hallegatte S, Fay M, Bangalore M et al (2015) Shock waves: managing the impacts of climate change on poverty. World Bank Publications, Washington, DCCrossRefGoogle Scholar
  27. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36CrossRefPubMedGoogle Scholar
  28. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785. CrossRefGoogle Scholar
  29. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. CrossRefGoogle Scholar
  30. Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. CrossRefPubMedGoogle Scholar
  31. IPCC (2013) climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  32. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional Aspects. Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  33. Kriegler E, O’Neill BC, Hallegatte S et al (2012) The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob Environ Change 22:807–822. CrossRefGoogle Scholar
  34. Lybbert TJ, Aboudrare A, Chaloud D et al (2011) Booming markets for Moroccan argan oil appear to benefit some rural households while threatening the endemic argan forest. Proc Natl Acad Sci 108:13963–13968. CrossRefPubMedPubMedCentralGoogle Scholar
  35. M’hirit O, Benzyane M, Benchekroune F, et al (1998) L’Arganier: Une espece fruitiere-forestiere a usages multiples. Belgique, Pierre MardagaGoogle Scholar
  36. MDCE (2016) La Troisième Communication Nationale à la Convention Cadre des Nations Unies sur le Changement Climatique. Ministre de l’environnement, Rabat (MAR)Google Scholar
  37. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. CrossRefGoogle Scholar
  38. Miller RG (1974) The jackknife-a review. Biometrika 61:1–15. CrossRefGoogle Scholar
  39. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. CrossRefPubMedGoogle Scholar
  40. Moukrim S, Lahssini S, Mharzi Alaoui H et al (2018) Modélisation de la distribution spatiale des espèces endémiques pour leur conservation: cas de l’argania spinosa (L.) Skeels. Rev D’Ecologie Terre Vie 73:153–166. Google Scholar
  41. Msanda F, El Aboudi A, Peltier JP (2005) Biodiversité et biogéographie de l’arganeraie marocaine. Cah Agric 14:357–364. doi:
  42. Naggar M, M’hirit O (2006) L’arganeraie: un parcours typique des zones arides et semi-arides marocaines. Sécheresse 17:314–317.–WsxwDn8AAQEAAGUMmlQAAAAK-a.pdf
  43. NFI (2005) National Forest Inventory; High Commission for Water, Forests and Combating Desertification, MoroccoGoogle Scholar
  44. Nouaim R (2005) L’Arganier au Maroc: entre mythes et réalités: une civilisation née d’un arbre. Editions L’HarmattanGoogle Scholar
  45. Nouaim R, Chaussod R, El Aboudi A, et al (1991) L’arganier. Essai de synthèse des connaissances sur cet arbre. Physiol Arbres Arbustes En Zones Arid Semi Arid Groupe D’Étude L’Arbre Eds John Libbey Eurotex Paris Fr 373–388Google Scholar
  46. OECD (2012) Environmental Outlook to 2050 The Consequences of Inaction. OECD Publishing, Paris.
  47. Pearson RG (2007) Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv 3:54–89.
  48. Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Nat Conserv 10:102–107. CrossRefGoogle Scholar
  49. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  50. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. CrossRefGoogle Scholar
  51. Phillips SJ, Anderson RP, Dudík M et al (2017) Opening the black box: an open-source release of Maxent. Ecography. CrossRefGoogle Scholar
  52. Rocher P (1926) L’arganier. Ann Géogr 35:259–267. CrossRefGoogle Scholar
  53. Smedmark JE, Swenson U, Anderberg AA (2006) Accounting for variation of substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae). Mol Phylogenet Evol 39:706–721CrossRefPubMedGoogle Scholar
  54. Stride G, Nylinder S, Swenson U (2014) Revisiting the biogeography of Sideroxylon (Sapotaceae) and an evaluation of the taxonomic status of Argania and Spiniluma. Aust Syst Bot 27:104–118CrossRefGoogle Scholar
  55. Weigel AP, Knutti R, Liniger MA, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Clim 23:4175–4191. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018
corrected publication May

Authors and Affiliations

  1. 1.Research center of plant and microbial biotechnology, biodiversity and environment, Faculty of SciencesMohammed V University in RabatRabatMorocco
  2. 2.Water and Forests DepartmentRabatMorocco
  3. 3.National School of Forest EngineersSaléMorocco
  4. 4.Department of Biology, Faculty of Sciences and TechniquesMoulay Ismail UniversityErrachidiaMorocco

Personalised recommendations