Advertisement

Long term impact of Acacia auriculiformis woodlots growing in rotation with cassava and maize on the carbon and nutrient contents of savannah sandy soils in the humid tropics (Democratic Republic of Congo)

  • Emilien Dubiez
  • Vincent Freycon
  • Jean-Noël Marien
  • Régis Peltier
  • Jean-Michel Harmand
Article

Abstract

Rotational woodlots with N2-fixing trees may be efficient agroforestry systems, allowing farmers to alternate agricultural and wood-energy production on the same area. However, their long-term effect on soil fertility is poorly understood. The aim of this study was to investigate the influence of successive phases of Acacia auriculiformis stands growing in rotation with crops on the chemical properties of sandy and very poor tropical soils. The study was conducted 22 years after the afforestation of humid herbaceous savannah in Mampu, Democratic Republic of Congo. The chemical properties of top soil (0–20 cm) from control savannah plots were compared with those from acacia plots that had undergone one, two or three rotations of acacia during the 22 year period. We found that the soil properties under non-harvested acacia stands in a 1st rotation and under acacia stands in a 2nd or 3rd rotation following charcoal production and maize and cassava cultivation were similar. Soils under all acacia stands had higher C, N and \({\text{NO}}_{3}^{ - }\)–N contents, but were more acidic, and had lower contents of exchangeable Ca, Mg, K and Na than the control savannah soils. Despite the increase in soil C and N, the sustainability of the acacia rotational agroforestry system after 22 years of practice is in question due to the steady decrease of soil cations, soil acidification and the risk of a decline in tree and crop productivity. To improve the nutrient balance and the sustainability of this system, different practices are recommended such as the debarking of tree stems before carbonization, the restitution of small branches and charcoal residues to the soil, and the supply of natural rock phosphate.

Keywords

Bateke Plateau Agroforestry Arenosol Charcoal production Shifting cultivation N2 fixation 

Notes

Acknowledgements

The authors would like to thank the Congolese farmers who dedicated their time to participate in this collective research, Nicolas Fauvet of CIRAD for the realization of the map, and the entire team and partners of the Makala Project, including the administrative staff of the European Commission in Kinshasa, CIRAD in Montpellier, Congolese ministries and the Hanns Seidel Foundation.

References

  1. Abbadie L, Lensi R (1990) Carbon and nitrogen mineralization and denitrification in a humid savanna of West- Africa (Lamto, Côte d’Ivoire). Acta Œcologica 11(5):717–728Google Scholar
  2. Baillie IC, Ashton PS, Chin SP, Davies SJ, Palmiotto PA, Russo SE, Tan S (2006) Spatial associations of humus, nutrients and soils in mixed dipterocarp forest at Lambir, Sarawak, Malaysian Borneo. J Trop Ecol 22(5):543–553CrossRefGoogle Scholar
  3. Bernhard-Reversat F (1996) Nitrogen cycling in tree plantations grown on a poor sandy savanna soil in Congo. Appl Soil Ecol 4(2):161–172CrossRefGoogle Scholar
  4. Bernhard-Reversat F, Diangana D, Tsatsa M (1993) Biomasse, minéralomasse et productivité en plantation d’Acacia mangium et A. auriculiformis au Congo. Bois et Forêts des Tropiques 238(4):35–44Google Scholar
  5. Bisiaux F, Peltier R, Mulielie JC (2009) Plantations industrielles et agroforesterie au service des populations des plateaux Batéké, Mampu, en République démocratique du Congo. Bois et Forêts des Tropiques 301(3):21–32CrossRefGoogle Scholar
  6. Boyer J (1976) L’aluminium échangeable: incidence agronomique. Evaluation et correction de sa toxicité dans les sols tropicaux. Cahiers ORSTOM. Série. Pédologie 14(4):259–269Google Scholar
  7. Buresh RJ, Tian G (1997) Soil improvement by trees in sub-Saharan Africa. Agrofor Syst 38(1–3):51–76CrossRefGoogle Scholar
  8. Deans JD, Diagne O, Lindley DK, Dione M, Parkinson JA (1999) Nutrient and organic-matter accumulation in Acacia senegal fallows over 18 years. For Ecol Manage 124(2):153–167CrossRefGoogle Scholar
  9. Drechsel P, Glaser B, Zech W (1991) Effect of 4 multipurpose tree species on soil amelioration during tree fallow in Central Togo. Agrofor Syst 16(3):193–202CrossRefGoogle Scholar
  10. Feldpausch TR, Rondon MA, Fernandes E, Riha SJ, Wandelli E (2004) Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecol Appl 14(4):164–176CrossRefGoogle Scholar
  11. Freycon V, Wonkam CJ, Fayolle A, Laclau JP, Lucot E, Jourdan C, Cornu G, Gourlet-Fleury S (2015) Tree roots can penetrate deeply in African semi-deciduous rain forests: evidence from two common soil types. J Trop Ecol 31(1):13–23CrossRefGoogle Scholar
  12. Giardina CP, Sanford RL Jr, Doxkersmith IC, Jaramillo VJ (2000) The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation. Plant Soil 220(1–2):247–260CrossRefGoogle Scholar
  13. Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51CrossRefGoogle Scholar
  14. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35(4):219–230CrossRefGoogle Scholar
  15. Gond V, Dubiez E, Boulogne M, Gigaud M, Peroches A, Pennec A, Peltier R (2016) Forest cover and carbon stock change dynamics in the Democratic Republic of Congo: case of the wood-fuel supply basin of Kinshasa. Bois et Forêts des Tropiques 327(1):19–28Google Scholar
  16. Grau O, Peñuelas J, Ferry B, Freycon V, Blanc L, Desprez M, Baraloto C, Chave J, Descroix L, Dourdain A, Guitet S, Janssens IA, Sardans J, Hérault B (2017) Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Sci Rep 7:45017CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hardiyanto EB, Nambiar ES (2014) Productivity of successive rotations of Acacia mangium plantations in Sumatra, Indonesia: impacts of harvest and inter-rotation site management. New For 45(4):557–575CrossRefGoogle Scholar
  18. Harmand JM, Njiti CF (1998) Effets de jachères agroforestières sur les propriétés d’un sol ferrugineux et sur la production céréalière. Agriculture et Dévelopement 18:21–30Google Scholar
  19. Harmand JM, Njiti FC, Bernhard-Reversat F, Puig H (2004) Aboveground and belowground biomass, productivity and nutrient accumulation in tree improved fallows in the dry tropics of Cameroon. For Ecol Manage 188(1–3):249–265CrossRefGoogle Scholar
  20. Isaac ME, Harmand JM, Lesueur D, Lelon J (2011) Tree age and soil phosphorus conditions influence N2-fixation rates and soil N dynamics in natural populations of Acacia senegal. For Ecol Manage 261(3):582–588CrossRefGoogle Scholar
  21. Jones A, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, Dewitte O, Gallali T, Hallett S, Jones R, Kilasara M, Le Roux P, Micheli E, Montanarella L, Spaargaren O, Thimbiano L, Van Ranst E, Yemefack M, Zougmore R (2013) Soil Atlas of Africa. European Commission, Publications Office of the European Union, LuxembourgGoogle Scholar
  22. Kang BT, Salako FK, Akobundu IO, Pleysier JL, Chianu JN (1997) Amelioration of a degraded Oxic Paleustalf by leguminous and natural fallows. Soil Use Manag 13(3):130–136CrossRefGoogle Scholar
  23. Kasongo RK, Van Ranst E, Verdoodt A, Kanyankagote P, Baert G (2009) Impact of Acacia auriculiformis on the chemical fertility of sandy soils on the Bateke plateau, DR Congo. Soil Use Manag 25(1):21–27CrossRefGoogle Scholar
  24. Kasongo RK, Van Ranst E, Verdoodt A, Kanyankogote P, Baert G (2010) Roche phosphatée de Kanzi comme engrais à propriété amendante pour des sols sableux de l’hinterland de Kinshasa (DR Congo). Etude et Gestion des Sols 17(1):45–56Google Scholar
  25. Kimaro AA, Timmer VR, Mugasha AG, Chamshama SA, Kimaro DA (2007) Nutrient use efficiency and biomass production of tree species for rotational woodlot systems in semi-arid Morogoro, Tanzania. Agrofor Syst 71(3):175–184CrossRefGoogle Scholar
  26. Koutika LS, Epron D, Bouillet JP, Mareschal L (2014) Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalyptus plantations on a nutrient-poor sandy soil. Plant Soil 379(1–2):205–216CrossRefGoogle Scholar
  27. Lacaux JP, Delmas R, Kouadio G, Cros B, Andreae MO (1992) Precipitation chemistry in the Mayombe forest of equatorial Africa. J Geophys Res 97(6):6195–6206CrossRefGoogle Scholar
  28. Laclau JP, Bouillet JP, Ranger J (2000) Dynamics of biomass and nutrient accumulation in a clonal plantation of Eucalyptus in Congo. For Ecol Manage 128(3):181–196CrossRefGoogle Scholar
  29. Laclau JP, Ranger J, De Dieu Nzila J, Bouillet JP, Gelhaye D, Deleporte P (2003) Eucalyptus et fertilité des sols au Congo. Bois et Forêts des Tropiques 277(3):69–84Google Scholar
  30. Laclau JP, Toutain F, M’Bou AT, Arnaud M, Joffre R, Ranger J (2004) The function of the superficial root mat in the biogeochemical cycles of nutrients in Congolaise Eucalyptus plantations. Ann Bot 93(3):249–261CrossRefPubMedPubMedCentralGoogle Scholar
  31. Laclau JP, Levillain J, Deleporte P, de Dieu Nzila J, Bouillet JP, Saint André L, Ranger J (2010) Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. For Ecol Manage 260(12):2148–2159CrossRefGoogle Scholar
  32. Louppe D, Ouattara N, Oliver R (1998) Maintien de la fertilité dans trois jachères arborées. Bilan minéral (Korhogo, nord Côte d’Ivoire). Agriculture et développement 18:47–54Google Scholar
  33. Macedo MO, Resende AS, Garcia PC, Boddey RM, Jantalia CP, Urquiaga S, Campello EFC, Franco AA (2008) Changes soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For Ecol Manage 255(5–6):1516–1524CrossRefGoogle Scholar
  34. Mareschal L, Laclau JP, Nzila JDD, Versini A, Koutika LS, Mazoumbou JC, Ranger J (2013) Nutrient leaching and deep drainage under Eucalyptus plantations managed in short rotations after afforestation of an African savanna: two 7-year time series. For Ecol Manage 307:242–254CrossRefGoogle Scholar
  35. Martins MDR, Angers DA (2015) Different plant types for different soil ecosystem services. Geoderma 237:266–269CrossRefGoogle Scholar
  36. Mendham DS, O’connell AM, Grove TS, Rance SJ (2003) Residue management effects on soil carbon and nutrient contents and growth of second rotation eucalypts. For Ecol Manage 181(3):357–372CrossRefGoogle Scholar
  37. Nair PKR (1985) Classification of agroforestry systems. Agrofor Syst 3(2):97–128CrossRefGoogle Scholar
  38. Nambiar EKS, Harwood CE (2014) Productivity of acacia and eucalypt plantations in Southeast Asia. 1. Bio- physical determinants of production: opportunities and challenges. Int For Rev 16(2):225–248Google Scholar
  39. Njoukam R, Bock L, Hebert J, Mathieu L, Oliver R, Peltier R (1996) Ligniculture et maintien de la fertilité des sols dans l’Ouest-Cameroun. Bois et Forêts des Tropiques 249(3):33–49Google Scholar
  40. Nyadzi GI, Otsyina RM, Banzi FM, Bakengesa SS, Gama BM, Mbwambo L, Asenga D (2003) Rotational woodlot technology in northwestern Tanzania: tree species and crop performance. Agrofor Syst 59(3):253–263CrossRefGoogle Scholar
  41. Nygren P, Fernández MP, Harmand JM, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst 94(2–3):123–160CrossRefGoogle Scholar
  42. Nzila JD, Bouillet JP, Laclau JP, Ranger J (2002) The effects of slash management on nutrient cycling and tree growth in Eucalyptus plantations in the Congo. For Ecol Manage 171(1–2):209–221CrossRefGoogle Scholar
  43. Ohta S (1990) Initial soil changes associated with afforestation with Acacia auriculiformis and Pinus kesiya on denuded grasslands of the Pantabangan area, Central Luzon, the Philippines. Soil Sci Plant Nutr 36(4):633–643CrossRefGoogle Scholar
  44. Oliver R, Njiti CF, Harmand JM (2000) Soil fertility characterization in trees fallow cultivation system in North Cameroon. Etude et Gestion des Sols 7:287–309Google Scholar
  45. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939, Washington DCGoogle Scholar
  46. Orsini L, Remy JC (1976) Utilisation du chlorure de cobaltihexamine pour la détermination simultanée de la capacité d’échange et des bases échangeables des sols. Science du Sol 4:269–275Google Scholar
  47. Peltier R, Pity Balle (1993) De la culture itinérante sur brûlis au jardin agroforestier en passant par les jachères enrichies” (From Slash and burn to sustainable agroforestry system, through improved fallow). Bois et Forêts des Tropiques 235(1):49–57Google Scholar
  48. Péroches A (2012) Étude sur l’évolution de la biomasse au niveau de terroirs du Plateau Batéké en République Démocratique du Congo. Impact des systèmes de culture et des techniques agroforestières telles que la Régénération Naturelle Assistée promues par le projet Makala. Cirad, Montpellier, SupAgro, Institut des Régions ChaudesGoogle Scholar
  49. Plassard C, Robin A, Le Cadre E, Marsden C, Trap J, Herrmann L, Waithaisong K, Lesueur D, Blanchard E, Chapuis-Lardy L, Hinsinger P (2015) Améliorer la biodisponibilité du phosphore: comment valoriser les compétences des plantes et les mécanismes biologiques du sol? Innovations Agronomiques 43:115–138Google Scholar
  50. Proces P, Dubiez E, Bisiaux F, Péroches A, Fayolle A (2017) Production d’Acacia auriculiformis dans le système agroforestier de Mampu, plateau Batéké, République démocratique du Congo. Bois et Forêts des Tropiques 334(4):5–18Google Scholar
  51. Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295(5562):2019–2020CrossRefPubMedGoogle Scholar
  52. Sankaran M, Hanan NP, Scholes RJ et al (2005) Determinants of woody cover in African savannas. Nature 438(7069):846–849CrossRefPubMedGoogle Scholar
  53. Schroth G, Lehmann J, Rodrigues MRL, Barros E, Macêdo JLV (2001) Plant-soil interactions in multistrata agroforestry in the humid tropics. Agrofor Syst 53(2):85–102CrossRefGoogle Scholar
  54. Shanmughavel P, Sha L, Zheng Z, Cao M (2001) Nutrient cycling in a tropical seasonal rain forest of Xishuangbanna, Southwest China. Part 1: tree species: nutrient distribution and uptake. Biores Technol 80(3):163–170CrossRefGoogle Scholar
  55. Szott LT, Palm CA (1996) Nutrient stocks in managed and natural humid tropical fallows. Plant Soil 186(2):293–309CrossRefGoogle Scholar
  56. Szott LT, Palm CA, Buresh RJ (1999) Ecosystem fertility and fallow function in the humid and subhumid tropics. Agrofor Syst 47(1–3):163–196CrossRefGoogle Scholar
  57. Tchichelle SV, Epron D, Mialoundama F, Koutika LS, Harmand JM, Bouillet JP, Mareschal L (2017) Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. Southern For 79(1):1–8Google Scholar
  58. Titshall L, Dovey S, Rietz D (2013) A review of management impacts on the soil productivity of South African commercial forestry plantations and the implications for multiple-rotation productivity. Southern For 75(4):169–183Google Scholar
  59. Yamashita N, Ohta S, Hardjono A (2008) Soil changes induced by Acacia mangium plantation establishment: comparison with secondary forest and Imperata cylindrica grassland soils in South Sumatra, Indonesia. For Ecol Manage 254(2):362–370CrossRefGoogle Scholar
  60. Zinn YL, Lal R, Resck DV (2005) Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 127(1):168–173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIRAD, UPR Forêts et SociétésMontpellierFrance
  2. 2.CIRAD, UMR Eco&SolsYaoundéCameroon
  3. 3.Forêts et Sociétés, Univ Montpellier, CIRADMontpellierFrance
  4. 4.Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgroMontpellierFrance
  5. 5.World Agroforestry Centre (ICRAF), West and Central Africa Regional ProgrammeYaoundéCameroon

Personalised recommendations