Skip to main content

Advertisement

Log in

Arbuscular mycorrhiza effects on Faidherbia albida (Del.) A. Chev. growth under varying soil water and phosphorus levels in Northern Ethiopia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Tree seedling establishment, survival and growth in dryland areas is greatly impacted by water, land use effects and soil nutrient availability. Arbuscular mycorrhizal fungi (AMF) can have a substantial effect on water and nutrient uptake by seedlings and are affected by nutrient application, water availability and inoculum source. In this study, we examined the effect of AMF inoculation, phosphorus application levels, soil water status, and inoculum source on the growth of Faidherbia albida seedlings. Two greenhouse experiments were conducted on F. albida seedlings: to compare (a) ±AMF inoculation, at three levels of volumetric soil water content (field capacity (FC), 60% of FC and 20% of FC), and three AMF inoculum sources (derived from cultivated land, grazing land and area exclosure); (b) ±AMF inoculation, at four levels of phosphorus application (0, 25, 50 and 100 mg kg−1) and three AMF inoculum sources. Inoculation with AMF, higher soil water and higher P application significantly increased the growth of seedlings (P < 0.05). F. albida seedlings responded positively to increased water levels. The highest growth and AMF colonization of seedlings was recorded under the lowest water stress with AMF inoculum from area exclosure followed by grazing land inoculum source. The lowest growth was recorded under the highest water stress and cultivated land inoculum source. Plant growth and biomass were positively correlated with increased soil P application, however, AMF colonization decreased with increasing P application. Applying P and inoculating F. albida seedlings with indigenous AMF under low water stress enables optimum plant growth improvement in dryland farming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Nyssen J, Haile M (2009) On the difference between “exclosures” and “enclosures” in ecology and the environment. J Arid Environ 73:762–763

    Article  Google Scholar 

  • Alho L, Carvalho M, Brito I, Goss MJ (2015) The effect of arbuscular mycorrhiza fungal propagules on the growth of subterranean clover (Trifolium subterraneum L.) under Mn toxicity in ex situ experiments. Soil Use Manag 31(2):337–344. https://doi.org/10.1111/sum.12183

    Article  Google Scholar 

  • Badege B (2001) Deforestation and land degradation in the Ethiopian highlands: a strategy for physical recovery. Northeast Afr Stud 8(1):7–25. https://doi.org/10.1353/nas.2005.0014

    Article  Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Estrada B, Azcón R, Ferrol N (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75(12):1292–1301. https://doi.org/10.1016/j.jaridenv.2011.06.001

    Article  Google Scholar 

  • Bati CB, Santilli E, Lombardo L (2015) Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels. Mycorrhiza 25:97–108. https://doi.org/10.1007/s00572-014-0589-0

    Article  Google Scholar 

  • Birhane E, Kuyper TW, Sterck FJ, Bongers F (2010) Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. For Ecol Manag 260(12):2160–2169. https://doi.org/10.1016/j.foreco.2010.09.010

    Article  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169(4):895–904. https://doi.org/10.1007/s00442-012-2258-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Birhane E, Gebremeskel K, Taddesse T, Hailemariam M, Hadgu KM, Norgrove L, Negussie A (2016) Integrating Faidherbia albida trees into a sorghum field reduces striga infestation and improves mycorrhiza spore density and colonization. Agrofor Syst. https://doi.org/10.1007/s10457-016-0027-8

    Google Scholar 

  • Bishaw B (2001) Deforestation and land degradation in the Ethiopian Highlands: A strategy for physical recovery. Northeast African Studies 8(1):7–25. https://doi.org/10.1353/nas.2005.0014

    Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk Density 1. In: Klute A (ed) Methods of soil analysis: part 1-physical and mineralogical methods. SSSA Book Ser. 5.1. SSSA, ASA, Madison, pp 363–375. https://doi.org/10.2136/sssabookser5.1.2ed.c13

    Google Scholar 

  • Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous Arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218:137–144

    Article  CAS  Google Scholar 

  • Bremmer JM, Mulvaney CS (1982) Nitrogen total. In: Page AL (ed) Methods of soil analysis, part 2 chemical and microbiological properties ASA monograph, number 9. Madison, WI, USA, pp 595–624

  • Bremner JM, Mulvaney CS (1982) Nitrogen total. In: Page AL (ed) Methods of soil analysis, part 2, chemical and microbiological properties. SSSA, Madison, pp 595–641

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph. J Biol Chem 32(June 1982):374. https://doi.org/10.1046/j.1469-8137.1997.00703-7.x

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Neal AL, Van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18(10):539–545. https://doi.org/10.1016/j.tplants.2013.06.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camprubí A, Estaún V, Nogales A (2008) Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 18:211–216. https://doi.org/10.1007/s00572-008-0168-3

    Article  PubMed  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84. https://doi.org/10.1016/j.agee.2006.03.011

    Article  Google Scholar 

  • Chev DA, Shinkafi MA, Aduradola AM (2009) Effects of Mycorrhiza on the growth and productivity of Faidherbia albida (Del.) A. Chev. Niger J Basic Appl Sci 17(2):198–201

    Google Scholar 

  • Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192(1):15–22. https://doi.org/10.1023/A:1004218915413

    Article  CAS  Google Scholar 

  • Dodd JC, Burton CC, Burns RG, Jeffries P (1987) Phosphatase activity associated with the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 7:163–172

    Article  Google Scholar 

  • Eason WR, Scullion J, Scott EP (1999) Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agric Ecosyst Environ 73(3):245–255. https://doi.org/10.1016/S0167-8809(99)00054-7

    Article  Google Scholar 

  • Friberg S (2001) Distribution and diversity of arbuscular mycorrhizal fungi in traditional agriculture on the Niger inland delta, Mali, West Africa, 53–80

  • Gai JP, Feng G, Cai XB, Christie P, Li XL (2006) A preliminary survey of the arbuscular mycorrhizal status of grassland plants in southern Tibet. Mycorrhiza 16(3):191–196. https://doi.org/10.1007/s00572-005-0032-7

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (2000) The role of ectomycorrhizal symbiosis in the resistance of forests to water stress. Agric 29:63–69

    Google Scholar 

  • García IV, Mendoza RE (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174. https://doi.org/10.1007/s00572-006-0088-z

    Article  PubMed  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis 1. In: Klute A (ed) Methods of soil analysis: part 1—physical and mineralogical methods, vol 5. Soil Science Society of America, Fitchburg, pp 383–411. https://doi.org/10.2136/sssabookser5.1.2ed

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular Arbuscul. New Phytol 84:489–500

    Article  Google Scholar 

  • Gnekow MA, Marschner H (1989) Role of VA-mycorrhiza in growth and mineral nutrition of apple (Malus pulmilavar. domestica) rootstock cuttings. Plant Soil 119:285–293

    Article  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gosling P, Proctor M, Jones J (2014) Distribution and diversity of Paraglomus spp. in tilled agricultural soils. Mycorrhiza 24:1–11. https://doi.org/10.1007/s00572-013-0505-z

    Article  PubMed  Google Scholar 

  • Hailemariam M, Birhane E, Asfaw Z, Zewdie S (2013) Arbuscular mycorrhizal association of indigenous agroforestry tree species and their infective potential with maize in the Rift Valley, Ethiopia. Agrofor Syst 87(6):1261–1272. https://doi.org/10.1007/s10457-013-9634-9

    Article  Google Scholar 

  • Haselwandter K, Bowen GD (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. For Ecol Manag 81:1–17

    Article  Google Scholar 

  • Jama B, Zeila A (2005) Agroforestry in the drylands of eastern Africa: (a call to action. ICRAF Working Paper—no. 1. World Agroforestry Centre), Nairobi

  • Jasper DA, Abbott LK, Robson AD (1989) Acacias respond to additions of phosphorus and to inoculation with VA mycorrhizal fungi in soils stockpiled during mineral sand mining. Plant Soil 108:99–108

    Article  Google Scholar 

  • Jayachandran K, Shetty KG (2003) Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquat Bot 76:281–290. https://doi.org/10.1016/S0304-3770(03)00075-5

    Article  CAS  Google Scholar 

  • Jefwa JM, Mung’atu J, Okoth P, Muya E, Roimen H, Njuguini S (2009) Influence of land use types on occurrence of arbuscular mycorrhizal fungi in the high altitude regions of Mt. Kenya. Trop Subtrop Agroecosyst 11: 277–290. http://redalyc.uaemex.mx/redalyc/pdf/939/93913057004.pdf

  • Joseph S, Martin G (2010) Symbiosis and stress. Springer, Berlin. https://doi.org/10.1007/978-90-481-9449-0

    Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2009) Contribution of arbuscular mycorrhiza to soil quality in contrasting cropping systems. Agric Ecosyst Environ 134(1–2):36–45. https://doi.org/10.1016/j.agee.2009.05.016

    Article  Google Scholar 

  • Khalil S, Loynachan TE, Tabatabia MA (1994) Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Google Scholar 

  • Khurana E, Singh JS (2001) Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environ Conserv 28:39–52. https://doi.org/10.1017/S0376892901000042

    Article  Google Scholar 

  • Mahdi AA, Atabani IMA (1992) Response of Bradyrhizobium inoculated soybean and lablab bean to inoculation with vesicular mycorrhizae. Exp Agric 28:399–407

    Article  Google Scholar 

  • Marschner H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56(1–2):203–207. https://doi.org/10.1016/S0378-4290(97)00131-7

    Article  Google Scholar 

  • Martinez TN, Johnson NC (2010) Agricultural management influences propagule densities and functioning of arbuscular mycorrhizas in low- and high-input agroecosystems in arid environments. Appl Soil Ecol 46(2):300–306. https://doi.org/10.1016/j.apsoil.2010.07.001

    Article  Google Scholar 

  • Mekuria W, Yami M (2013) Changes in woody species composition following establishing exclosures on grazing lands in the lowlands of Northern Ethiopia. Afr J Environ Sci Technol 7:30–40. https://doi.org/10.5897/AJEST11.378

    Google Scholar 

  • Mekuria W, Veldkamp E, Tilahun M, Olschewski R (2011) Economic valuation of land restoration: the case of exclosures established on communal grazing lands in Tigray, Ethiopia. Land Degrad Dev 22:334–344

    Article  Google Scholar 

  • Mengistu T, Teketay D, Hulten H, Yemshaw Y (2005) The role of enclosures in the recovery of woody vegetation in degraded dryland hillsides of central and northern Ethiopia. J Arid Environ 60:259–281

    Article  Google Scholar 

  • Ndoye F, Kane A, Ngonkeu Mangaptché EL, Bakhoum N, Sanon A, Diouf D, Sy MO, Baudoin E, Noba K, Prin Y (2012) Changes in land use system and environmental factors affect arbuscular mycorrhizal fungal density and diversity, and enzyme activities in rhizospheric soils of Acacia senegal (L.) Willd. ISRN Ecol. https://doi.org/10.5402/2012/563191

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis, part 2 chemical and microbiological properties. ASA Monograph, Number 9. Madison, WI, USA, 403–430

  • Onguene NA, Kuyper TW (2005) Growth response of three native timber species to soils with different arbuscular mycorrhizal inoculum potentials in South Cameroon: indigenous inoculum and effect of addition of grass inoculum. For Ecol Manag 210(1–3):283–290. https://doi.org/10.1016/j.foreco.2005.02.038

    Article  Google Scholar 

  • Onguene NA, Ngonkeu LEM, Kuyper TW (2011) Growth response of Pterocarpus soyauxii and Lophira alata seedlings to host soil mycorrhizal inocula in relation to land use types. Afr J Microbiol Res 5(17):2391–2398. https://doi.org/10.5897/AJMR10.061

    Article  Google Scholar 

  • Ortas I (2015) Comparative analyses of Turkey agricultural soils: potential communities of indigenous and exotic mycorrhiza species’ effect on maize (Zea mays L.) growth and nutrient uptakes. Eur J Soil Biol 69:79–87. https://doi.org/10.1016/j.ejsobi.2015.05.006

    Article  Google Scholar 

  • Ortas I, Ustuner O (2014) Determination of different growth media and various mycorrhizae species on citrus growth and nutrient uptake. Sci Hortic 166:84–90. https://doi.org/10.1016/j.scienta.2013.12.014

    Article  CAS  Google Scholar 

  • Pellegrino E, Bosco S, Ciccolini V, Pistocchi C, Sabbatini T, Silvestri N, Bonari E (2015) Agriculture, ecosystems and environment agricultural abandonment in mediterranean reclaimed peaty soils: long-term effects on soil chemical properties, arbuscular mycorrhizas and CO2 flux. Agric Ecosyst Environ 199:164–175. https://doi.org/10.1016/j.agee.2014.09.004

    Article  CAS  Google Scholar 

  • Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margariata Becker and Hall. New Phytol 129:425–431

    Article  CAS  Google Scholar 

  • SAS (2002). User’s guide: statistics version 9.00. SAS Institute, Inc., Cary, North Carolina

  • Schreiner RP, Bethlenfalvay GJ (1995) Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 15:271–285

    Article  Google Scholar 

  • Seckbach, Grube (2010) Symbiosis and stress: joint ventures in biology, cellular origin, life in exetereme habitats, astrobiology. Springer, Berlin pp 359–374

    Book  Google Scholar 

  • Seyoum Y, Birhane E, Mengistu T, Esmael N, Hagazi N, Kassa H (2015) Enhancing the role of the forestry sector in building climate resilient green economy in Ethiopia: scaling up effective forest management practices in Tigray National Regional state with emphasis on area exclosure. Center for international Forestry Research, Ethiopia Offices, Addis Ababa

    Google Scholar 

  • Shepherd KD, Jefwa J, Wilson J, Ndufa JK, Ingleby K, Mbuthu KW (1996) Infection potential of farm soils as mycorrhizal inocula for Leucaena leucocephela. Biol Fertil Soils 22:16–21

    Article  Google Scholar 

  • Siddiqui ZA, Pichtel J (2008) Mycorrhixae: an overview. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht pp 1–36

    Chapter  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Soil Sci Soc Am J. https://doi.org/10.1097/00010694-198403000-00011

    Google Scholar 

  • Stevens KJ, Wall CB, Janssen JA (2011) Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza 21:279–288. https://doi.org/10.1007/s00572-010-0334-2

    Article  PubMed  Google Scholar 

  • Tchabi A, Coyne D, Hountondji F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18(4):181–195. https://doi.org/10.1007/s00572-008-0171-8

    Article  PubMed  Google Scholar 

  • Tennant D (1975) A test of modified line intersect method of estimating root length. J Ecol 63:995–1001

    Article  Google Scholar 

  • Turjaman M, Tamai Y, Santoso E (2006) Arbuscular mycorrhizal fungi increased early growth of two non-timber forest product species Dyera polyphylla and Aquilaria filaria under greenhouse conditions. Mycorrhiza. https://doi.org/10.1007/s00572-006-0059-4

    PubMed  Google Scholar 

  • Van Ranst E, Verloo M, Demeyer A, Pauwels JM (1999) Manual for the soil chemistry and fertility laboratory: analytical methods for soils and plants, equipment and management of consumables. University of Gent, Belgium

    Google Scholar 

  • Van Reeuwijk LP (1995) Procedures for soil analysis, 5th ed. Technical Paper 9, International Soil Reference & Information Centre (ISRIC), Wageningen, The Netherlands

  • Varma A, Kharkwal AC (2009) Symbiotic fungi. Springer, Berlin. https://doi.org/10.1007/978-3-540-95894-9

    Book  Google Scholar 

  • Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62. https://doi.org/10.1016/j.soilbio.2011.11.018

    Article  CAS  Google Scholar 

  • Xie X, Weng B, Cai B, Dong Y, Yan C (2014) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Appl Soil Ecol 75:162–171. https://doi.org/10.1016/j.apsoil.2013.11.009

    Article  Google Scholar 

Download references

Acknowledgements

The financial assistance provided by Mekelle University recurrent budget (CDANR/RB/14/2012) is gratefully acknowledged. We are grateful to the two anonymous referees for constructive comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengsteab Hailemariam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hailemariam, M., Birhane, E., Gebresamuel, G. et al. Arbuscular mycorrhiza effects on Faidherbia albida (Del.) A. Chev. growth under varying soil water and phosphorus levels in Northern Ethiopia. Agroforest Syst 92, 485–498 (2018). https://doi.org/10.1007/s10457-017-0146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-017-0146-x

Keywords

Navigation