Photosynthetic characteristics and simulation of annual leaf carbon gains of hybrid poplar (Populus nigra L. × P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) in a temperate agroforestry system

  • Manfred Küppers
  • Dieter Schmitt
  • Susanne Liner
  • Christian Böhm
  • Michael Kanzler
  • Maik Veste
Article

Abstract

A leaf net photosynthesis model is presented driven by light and modulated by temperature and air humidity. From this the seasonal variation of CO2 uptake and release could be modelled to estimate the annual carbon fluxes of sun and shade leaves. In fully expanded leaves light is the major factor determining daily carbon balances, and highest observed daily carbon gains in sun leaves amounted to 748.9 mmol CO2 m−2 day−1 in poplar and to 536.3 mmol CO2 m−2 day−1 in black locust, while the annual carbon gains amounted to 46,824 mol CO2 m−2 in black locust and 66,803 mol CO2 m−2 in hybrid poplar. Results obtained via gas exchange measurements and from the leaf model clearly indicate a potentially better growth performance of the poplar compared to black locust on the investigated site. The presented photosynthesis model provides a good and realistic estimation for seasonal carbon balances on the leaf level for both species.

Keywords

Short-rotation forestry Bioenergy Ecophysiology Carbon fluxes Photosynthesis model Leaf gas exchange 

References

  1. Baum S, Bolte A, Weih M (2012) High value of short rotation coppice plantations for phytodiversity in rural landscapes. GCB Bioenergy 4:728–738CrossRefGoogle Scholar
  2. Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371CrossRefGoogle Scholar
  3. Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annu Rev Ecol Syst 11:287–310CrossRefGoogle Scholar
  4. Beesk M (2015) Untersuchungen zum Wasser-, Nährstoffhaushalt und zum Wachstum von robinien in Agroforstssystemen in der Niederlausitz. Master-Thesis, Brandenburg University of Technology Cottbus-SenftenbergGoogle Scholar
  5. Beyschlag W, Eckstein J (1998) Stomatal patchiness. Prog Bot 59:283–298CrossRefGoogle Scholar
  6. Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann For Res 54:215–227Google Scholar
  7. Böhm C, Kanzler M, Freese D (2014) Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley cropping systems in Germany. Agrofor Syst 88:579–591CrossRefGoogle Scholar
  8. Boring LR, Swank WT (1984) The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72(3):749–766CrossRefGoogle Scholar
  9. Brilli F, Giolo B, Fares S, Zenone T, Zona D, Gielen B, Loreta F, Janssens I, Ceulemans R (2015) Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season. Geophys Res Abstr 17:EGU-2015-6554Google Scholar
  10. Burel F (1996) Hedgerows and their role in agricultural landscapes. Crit Rev Plant Sci 15(2):169–190CrossRefGoogle Scholar
  11. Burns RM, Honkala BH (eds) (1990) Silvics of North America: vol 1 conifers and vol 2 hardwoods. Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington, DCGoogle Scholar
  12. Ceulemans RW, Deraedt W (1999) Production physiology and growth potential of poplars under short-rotation forestry culture. For Ecol Manag 121:9–23CrossRefGoogle Scholar
  13. Chazdon RL, Pearcy RW (1986) Photosynthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia 69:517–523CrossRefGoogle Scholar
  14. Christersson L, Sennerby-Forsse L, Zsuffa L (1993) The role and significance of woody biomass plantations in Swedish agriculture. For Chron 69(6):687–693CrossRefGoogle Scholar
  15. Cowan IR (1982) Regulation of water use in relation to carbon gain in higher plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II—water relations and carbon assimilation. Encyclopedia of plant physiology NS. Springer, Berlin, pp 589–613Google Scholar
  16. Cui Q, Feng Z, Pfiz M, Veste M, Küppers M, He K, Gao J (2012) Trade-off between shrub plantation and wind-breaking in the arid sandy lands of Ningxia, China. Pak J Bot 44(5):1639–1649Google Scholar
  17. De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big leaf models. Plant Cell Environ 20:537–557CrossRefGoogle Scholar
  18. Dillen SY, Djomo SN, Al Afas N, Vanbeveren S, Ceulemans R (2013) Biomass yield and energy balance of a short-rotation poplar coppice with multiple clones on degraded land during 16 years. Biomass Bioenergy 56:157–165CrossRefGoogle Scholar
  19. Dowdeswell WH (1987) Hedgerows and verges. Allen and Unwin, LondonGoogle Scholar
  20. Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178CrossRefGoogle Scholar
  21. Eschenbach C (2000) The effect of light acclimation of single leaves on whole tree growth and competition—an application of the tree growth model ALMIS. Ann For Sci 57:599–609CrossRefGoogle Scholar
  22. Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19CrossRefGoogle Scholar
  23. Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II: water relations and carbon assimilation. Encyclopedia of plant physiology, new series, vol 12B. Springer, Heidelberg, pp 549–587CrossRefGoogle Scholar
  24. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefPubMedGoogle Scholar
  25. Foote KC, Schaedle M (1976) Diurnal and seasonal patterns of photosynthesis and respiration of Populus tremuloides Michx. Plant Physiol 58(5):651–655PubMedCentralCrossRefPubMedGoogle Scholar
  26. Gold MA, Hanover JW (1987) Agroforestry systems for the temperate zone. Agrofor Syst 5(2):109–121CrossRefGoogle Scholar
  27. Gross LJ, Kirschbaum MUF, Pearcy RW (1991) A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and Rubisco activation. Plant Cell Environ 14:881–893CrossRefGoogle Scholar
  28. Grünewald H, Brandt BK, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29(4):319–328CrossRefGoogle Scholar
  29. Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenergy Res 2(3):123–133CrossRefGoogle Scholar
  30. Harley PC, Tenhunen JD, Beyschlag W, Lange OL (1987) Seasonal changes in photosynthetic rates and photosynthetic capacity in leaves of Cistus salvifolius, a European Mediterranean semi-deciduous shrub. Oecologia 74(3):380–388CrossRefGoogle Scholar
  31. Henzler J (2012) Blattgasaustausch von Pflanzen aus der Taiga Zentral-Alaskas. BSc Thesis, University of HohenheimGoogle Scholar
  32. Hikosaka K, Ishikawa K, Borjigidal A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57(2):291–302CrossRefPubMedGoogle Scholar
  33. Hikosaka K, Niinemets Ü, Anten NPR (2016) Canopy photosynthesis: from basics to applications. In: Advances in photosynthesis and respiration, vol 42. Springer, DordrechtGoogle Scholar
  34. Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LFM (2014) Dynamic photosynthesis in different environmental conditions. J Exp Bot 66(9):2415–2426CrossRefPubMedGoogle Scholar
  35. Kanzler M, Böhm C, Mirck J, Schmitt D, Veste M (2016) Agroforstliche Landnutzung als Anpassungsstrategie an den Klimawandel. Mitt Ges Pflanzenbau 28:126–127Google Scholar
  36. Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. N Phytol 179:15–32CrossRefGoogle Scholar
  37. Kirschbaum MUF, Gross LJ, Pearcy RW (1988) Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant Cell Environ 11:111–121Google Scholar
  38. Kirschbaum MUF, Küppers M, Schneider H, Giersch C, Noe S (1998) Modelling of photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates. Planta 2044:16–26Google Scholar
  39. Kobza J, Edwards GE (1987) The photosynthetic induction response in wheat leaves: net CO2 uptake, enzyme activation, and leaf metabolites. Planta 171:549–559CrossRefPubMedGoogle Scholar
  40. Koike T (1987) Photosynthesis and expansion in leaves of early, mid and late successional tree species, birch, ash and maple. Photosynthetica 21:503–508Google Scholar
  41. Küppers M (1978) Die Regulation der Spaltöffnungen von Corylus avellana L. in Abhängigkeit von Blattwasserzustand und Luftfeuchte. Diploma-Thesis, University of Frankfurt (M)/Bayreuth, p 135Google Scholar
  42. Küppers M (1982) Kohlenstoffhaushalt, Wasserhaushalt und Wuchsformen von Holzgewächsen im Konkurrenzgefüge eines Heckenstandortes. Dissertation, Universität BayreuthGoogle Scholar
  43. Küppers M (1984a) Kohlenstoffhaushalt, Wasserhaushalt, Wachstum und Wuchsform von Holzgewächsen im Konkurrenzgefüge eines Heckenstandortes. In: E-D Schulze, A Reif, M Küppers (eds) Die pflanzenökologische Bedeutung und Bewertung von Hecken. Akademie für Naturschutz und Landschaftspflege, Laufen/Salzach. Beiheft 3, Teil 1: p 10–102Google Scholar
  44. Küppers M (1984b) Carbon relations and competition between woody species in a Central European hedgerow. I. Photosynthetic characteristics. Oecologica 64:332–343CrossRefGoogle Scholar
  45. Küppers M (1984c) Carbon relations and competition between woody species in a Central European hedgerow. II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway. Oecologica 64:344–354CrossRefGoogle Scholar
  46. Küppers M (1984d) Carbon relations and competition between woody species in a Central European hedgerow. III. Carbon and water balance on the leaf level. Oecologica 65:94–100CrossRefGoogle Scholar
  47. Küppers M (1985) Carbon relations and competition between woody species in a Central European hedgerow. IV. Growth form and partitioning. Oecologica 66:343–352CrossRefGoogle Scholar
  48. Küppers M (1988) Changes in plant ecophysiology across a Central European Hedgerow Ecotone. In: Hansen AJ, Di Castri F (eds) Landscape boundaries. Ecological studies, vol 92. Springer, Heidelberg, pp 285–303CrossRefGoogle Scholar
  49. Küppers M (1989a) Hecken und Flurgehölze – Paradeobjekte für produktions- und populationsbiologische Untersuchungen an Holzgewächsen. Verh Ges Ökol 18:689–700Google Scholar
  50. Küppers M (1989b) Ecological significance of above-ground architectural patterns in woody plants: a question of cost-benefit relationships. Trends Ecol Evol 4:375–379CrossRefPubMedGoogle Scholar
  51. Küppers M, Häder D-P (1999) Methodik der Photosyntheseforschung - Messung und Interpretation des CO2-Gasaustausches von intakten Blättern. In: Häder D-P (ed) Photosynthese. Thieme, Tübingen, pp 21–46Google Scholar
  52. Küppers M, List R (1997) MADEIRA—a simulation of carbon gain, allocation, canopy architecture in competing woody plants. In: Jeremonidis G, Vincent JFV (eds) Plant biomechanics 1997, conference proceedings I: papers. Centre for Biomimetics, The University of Reading, Reading, pp 321–329Google Scholar
  53. Küppers M, Pfiz M (2009) Role of photosynthetic induction for daily and annual carbon gains of leaves and plant canopies. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico—understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht, pp 417–440Google Scholar
  54. Küppers M, Schulze E-D (1985) An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO2 and H2O exchange. Aust J Plant Physiol 12:513–526CrossRefGoogle Scholar
  55. Küppers M, Zech W, Schulze E-D, Beck E (1985) CO2-assimilation, transpiration und Wachstum von Pinus silvestris L. bei unterschiedlicher Magnesiumversorgung. Forstwiss Cent 104:23–36CrossRefGoogle Scholar
  56. Kurth W (1994) Morphological models of plant growth: possibilities and ecological relevance. Ecol Model 75(76):299–308CrossRefGoogle Scholar
  57. Laisk A, Nedbal L, Govindjee (2009) Photosynthesis in silico—understanding complexity from molecules to ecosystems. In: Advances in photosynthesis and respiration, vol 29. Springer, DordrechtGoogle Scholar
  58. Lange OL, Lösch R, Schulze E-D, Kappen L (1971) Responses of stomata to changes in humidity. Planta 100:76–86CrossRefPubMedGoogle Scholar
  59. Lange OL, Schulze E-D, Evenari M, Kappen L, Buschbom U (1974) The temperature-related photosynthetic capacity of plants under desert conditions. I. Seasonal changes of the photosynthetic response to temperature. Oecologia 17:97–110CrossRefGoogle Scholar
  60. Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280CrossRefPubMedGoogle Scholar
  61. Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin, p 513CrossRefGoogle Scholar
  62. Lenz KE, Host GE, Roskoski K, Noormets A, Sober A, Karnosky DF (2010) Analysis of a Farquhar–von Caemmerer–Berry leaf-level photosynthetic rate model for Populus tremuloides in the context of modeling and measurement limitations. Environ Pollut 158:1015–1022CrossRefPubMedGoogle Scholar
  63. Lu M, Nygren P, Perttunen J, Pallardy SG, Larsen DR (2011) Application of the functional–structural tree model LIGNUM to growth simulation of short-rotation eastern cottonwood. Silva Fenn 45(3):431–474CrossRefGoogle Scholar
  64. Mantovani D, Veste M, Freese D (2014) Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water use efficiency. N Z J For 44:29CrossRefGoogle Scholar
  65. Mantovani D, Veste M, Boldt-Burisch K, Fritsch S, Koning L, Freese D (2015a) Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation. Ann For Res 58(2):259–274CrossRefGoogle Scholar
  66. Mantovani D, Veste M, Böhm C, Vignudelli M, Freese D (2015b) Spatial and temporal variation of drought impact on black locust (Robinia pseudoacacia L.) water status and growth. iForest J Biogeosci For 8:743–757CrossRefGoogle Scholar
  67. Martin MJ, Host GE, Lenz KE, Isebrands JG (2001) Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf level model of ozone effects on photosynthesis to a complex canopy architecture. Environ Pollut 115:425–436CrossRefPubMedGoogle Scholar
  68. Matyssek R (1985a) Der Kohlenstoff-, Wasser- und Nährstoffhaushalt der wechselgrünen und immergrünen Koniferen Lärche, Fichte, Kiefer. Doctoral Thesis, University of BayreuthGoogle Scholar
  69. Maytssek R (1985) The carbon balance of three deciduous larch species and an evergreen spruce species near Bayreuth (W Germany). In: Turner H, Tranquillini (eds) Establishment and tending of subalpine forests: research and management. Proceedings of the 3rd IUFRO workshop P 1.07-00, 1984. Eidg Anst Forstl Vers Ber 270:123–133Google Scholar
  70. Maytssek R (1986) Carbon, water and nitrogen relations in evergreen and deciduous conifers. Tree Physiol 2:177–187CrossRefGoogle Scholar
  71. Matyssek R, Schulze E-D (1987) Heterosis in hybrid larch (Larix decidua × L. leptolepis) II. Growth characteristics. Trees 1:225–231CrossRefGoogle Scholar
  72. Midgley G, Veste M, von Willert DJ, Davis GW, Steinberg M, Powrie LW (1997) Comparative field performance of three different gas exchange systems. Bothalia 27(1):83–89CrossRefGoogle Scholar
  73. Mosquera-Losada MR, Moreno G, Pardini A, McAdam JH, Papanastasis V, Burgess PJ, Lamersdorf N, Castro M, Liagre F, Rigueiro-Rodríguez A (2012) Past, present and future of agroforestry systems in Europe. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Advances in agroforestry, vol 9. Springer, Heidelberg, pp 285–312CrossRefGoogle Scholar
  74. Mott KA, Woodrow IE (2000) Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. J Exp Bot 51:399–406CrossRefPubMedGoogle Scholar
  75. Naumberg E, Ellsworth DS (2002) Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species. Tree Physiol 22:393–401CrossRefGoogle Scholar
  76. Nygren P, Kiema P, Rebottaro S (1996) Canopy development, CO2 exchange and carbon balance of a modelled agroforestry tree. Tree Physiol 16:733–745CrossRefPubMedGoogle Scholar
  77. Oren R, Zimmermann R (1989) CO2 assimilation and the carbon balance of healthy and declining Norway spruce stands. Ecol Stud 77:352–369CrossRefGoogle Scholar
  78. Peak D, Mott KA (2011) A new, vapor-phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ 34:162–178CrossRefPubMedGoogle Scholar
  79. Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453CrossRefGoogle Scholar
  80. Pearcy RW, Gross LJ, He D (1997) An improved dynamic model of photosynthesis for estimation of carbon gain in sunfleck light regimes. Plant Cell Environ 20:411–424CrossRefGoogle Scholar
  81. Perttunen J, Sievänen R, Nikinmaa E (1998) LIGNUM: a model combining the structure and the functioning of trees. Ecol Model 108:189–198CrossRefGoogle Scholar
  82. Pretzsch H, Grote R, Reineking B, Rötzer Th, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087CrossRefPubMedGoogle Scholar
  83. Raschke K, Patzke J, Daley PF, Berry JA (1990) Spatial and temporal heterogenities of photosynthesis detected through analysis of chlorophyll-fluorescence images of leaves. In: Baltscheffsky M (ed) Current research in photosynthesis. Kluwer, Boston, pp 573–578Google Scholar
  84. Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv Lignaria Hung 4:127–132Google Scholar
  85. Reeg T, Bemann A, Konold W, Murach D, Siecker H (Hrsg) (2009) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, p 379 SGoogle Scholar
  86. Roden JS (2003) Modelling the light interception and carbon gain of individual fluttering aspen (Populus tremuloides Michx) leaves. Trees 17:117–126Google Scholar
  87. Roden JS, Pearcy RW (1993a) Effect of leaf flutter on the light environment of poplars. Oecologia 93:201–207CrossRefGoogle Scholar
  88. Roden JS, Pearcy RW (1993b) Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments. Oecologia 93:208–214CrossRefGoogle Scholar
  89. Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus sylvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora (Jena) 159:177–232Google Scholar
  90. Schulze E-D, Hall AE (1982) Stomatal control of water loss. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II: water relations and photosynthetic productivity. Encyclopedia of plant physiology, new series, vol 12B. Springer, Heidelberg, pp 181–230CrossRefGoogle Scholar
  91. Schulze E-D, Küppers M (1979) Short-term and long-term effects of plant water deficits on stomatal response to humidity in Corylus avellana L. Planta 146:319–326CrossRefPubMedGoogle Scholar
  92. Sharkey TD (1996) Emission of low molecular mass hydrocarbons from plants. Trends Plant Sci 1:78–82CrossRefGoogle Scholar
  93. Smith J, Pearce BD, Wolfe MS (2012) A European perspective for developing modern multifunctional agroforestry systems for sustainable intensification. Renew Agric Food Syst 27(4):232–332CrossRefGoogle Scholar
  94. Smukler SM, Sánchez-Moreno S, Fonte SJ, Ferris H, Klonsky K, O’Geen AT, Scow KM, Steenwerth KL, Jackson LE (2010) Biodiversity and multiple ecosystem functions in an organic farmscape. Agric Ecosyst Environ 139(1–2):80–97CrossRefGoogle Scholar
  95. Staudt MN, Seufert G (1995) Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.). Naturwissenschaften 82:89–92CrossRefGoogle Scholar
  96. Stegemann J, Timm H-C, Küppers M (1999) Simulation of photosynthetic plasticity in response to highly fluctuating light: an empirical model integrating dynamic photosynthetic induction and capacity. Trees 14:145–160CrossRefGoogle Scholar
  97. Szymanski R (2010) Ökophysiologische Untersuchungen zum CO2-Blattgasaustausch an Populus tremuloides Michx. und Picea glauca Moench in Zentralalaska. Diploma Thesis, University of Hohenheim, p 115Google Scholar
  98. Timm H-C, Küppers M, Stegemann J (2004) Non-destructive analysis of architectural expansion and assimilate allocation in different tropical tree saplings: consequences of using steady-state and dynamic photosynthesis models. Ecotropica 10:101–121Google Scholar
  99. Tullus A, Rytter L, Tullus T, Weih M, Tullus H (2012) Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand J For Res 27(1):10–29CrossRefGoogle Scholar
  100. Veste M, Böhm C (2017) Agrarholz - Schnellwachsende Bäume in der Landwirtschaft. Biologie, Ökologie und Management. Springer Spektrum, HeidelbergGoogle Scholar
  101. Veste M, Halke C (2017) Ökophysiologische Plastizität der Photosynthese von Robinien (Robinia pseudoacacia L.) und Hybrid-Pappeln (Populus nigra L. × P. maximowiczii Henry) bei Hitzestress und Sommertrockenheit in der Niederlausitz. In: Proceedings 5. Agroforstforum, Senftenberg, 30 November–1 December 2016, p 1–12Google Scholar
  102. Veste M, Herppich W (1995) Diurnal and seasonal fluctuations in the atmospheric CO2 concentration and their influence on the photosynthesis of Populus tremula. Photosynthetica 31(3):371–378Google Scholar
  103. Veste M, Kriebitzsch W-U (2013) Einfluss von Trockenstress auf Photosynthese, Transpiration und Wachstum junger Robinien (Robinia pseudoacacia L.). Forstarchiv 84:35–42Google Scholar
  104. Veste M, Gao J, Sun B, Breckle S-W (2006) The green Great Wall—combating desertification in China. Geogr Rundsch Int Ed 2(3):14–20Google Scholar
  105. Veste M, Balasus A, Kern J, Herppich WB (2012) Influence of nitrogen fertilization on photosynthesis and leaf nitrogen content of leaves of poplar and willow plants in short rotation plantations. Verh Ges Ökol 42:138Google Scholar
  106. Veste M, Böhm C, Quinkenstein A, Freese D (2013) Biologische Stickstoff-Fixierung der Robinie. AFZ-Der Wald 2(2013):40–42Google Scholar
  107. Von Stamm S (1994) Linked stomata and photosynthesis model for Corylus avellana (hazel). Ecol Model 75(76):345–357CrossRefGoogle Scholar
  108. Von Willert DJ, Herppich WB, Mattysek R (1995) Experimentelle Pflanzenökologie - Grundlagen und Anwendungen. Thieme, StuttgartGoogle Scholar
  109. Wachendorf M (2010) Ökophysiologische Untersuchungen zum CO2-Blattgasaustausch an Betula papyrifera marsh. und Picea mariana mill. in Zentralalaska. Diploma-Thesis, University of Hohenheim, p 111Google Scholar
  110. Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32:1066–1081CrossRefPubMedGoogle Scholar
  111. Weih M (2004) Intensive short-rotation forestry in boreal climates: present and future perspectives. Can J For Res 34:1369–1378CrossRefGoogle Scholar
  112. Wittmann C, Guido A, Pfanz H (2001) Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic Appl Ecol 2:145–154CrossRefGoogle Scholar
  113. Woodrow IE, Mott KA (1989) Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. Aust J Plant Physiol 16:487–500CrossRefGoogle Scholar
  114. Wurzburger N, Miniat CF (2013) Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174:1117–1126CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute of BotanyUniversity of HohenheimStuttgartGermany
  2. 2.Department of Soil Protection and RecultivationBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations