Advertisement

Agroforestry Systems

, Volume 92, Issue 1, pp 171–182 | Cite as

Predictive models for biomass and carbon stock estimation in Psidium guajava on bouldery riverbed lands in North-Western Himalayas, India

  • A. C. Rathore
  • Abhishek Kumar
  • J. M. S. Tomar
  • J. Jayaprakash
  • H. Mehta
  • R. Kaushal
  • N. M. Alam
  • A. K. Gupta
  • A. Raizada
  • O. P. Chaturvedi
Article

Abstract

Psidium guajava Linnaeus., popularly known as ‘Apple of Tropics’ is one of the major fruit crops undertaken on the bouldery riverbed lands of North-Western Himalayan region. Different predictive models were fitted to establish a functional relationship between biomass and collar diameter (CD) of the tree. Out of seven different models attempted viz, Monomolecular, Logistic, Gompetz, Allometric, Rechards, Chapman and Linear, Allometric model (Y = a Xb where Y = total biomass, X = collar diameter, a and b = parameter estimates) fulfills the validation criteria to the best possible extent and is considered as best performing. Allometric model has been fitted to find the relationship between biomass of different tree components and collar diameter. All the equations indicated high correlation between biomass and collar diameter and the R2 values for the fitted functions varied from 0.89 to 0.99. The calculated t-statistic values for all the components found to be non-significant (p > 0.05) which clearly reveals the validity and reliability of the model. The developed allometric models were used to estimate the biomass and carbon stocks of P. guajava plantations of the study site. The estimated total biomass varied from 1.43 Mg ha−1 in 4 year to 40.54 Mg ha−1 in 14 year old plantation. Mitigated carbon varied from 0.26 in 4 year to 7.75 Mg ha−1 in 14 year of plantation. The total biomass carbon stocks varied from 0.48 Mg ha−1 (4 year) to 13.66 Mg ha−1 (14 year) guava plantation.

Keywords

Allometric Biomass Carbon Degraded lands Psidium guajava Predictive models 

Notes

Acknowledgments

The authors are thankful to Director Indian Institute of Soil and Water Conservation, Dehradun, India for providing necessary facilities to carry out the study. The help rendered by Mr. Chatar Singh and Dr. Gambhir Singh in data collection and soil samples analysis is gratefully acknowledged.

References

  1. Ajit DK, Das OP, Chaturvedi Jabeen Nighat, Dhyani SK (2011) Predictive models for dry weight estimation of above and below ground biomass components of Populus deltoides in India: development and comparative diagnosis. Biomass Bioenergy 35(1145):1152Google Scholar
  2. Araujo TM, Higuchi N, Carvalho JA (1999) Comparison of formulae for biomass content determination in a tropical rain forest in the state of Para, Brazil. For Ecol Manag 17:43–52CrossRefGoogle Scholar
  3. Arora G, Chaturvedi S, Kaushal R, Nain A, Tewari S, Alam NM, Chaturvedi OP (2013) Growth, biomass, carbon stocks and sequestration in age series Populus deltoides plantations in Tarai region of central Himalaya. Turk J Agric For 38:550–560CrossRefGoogle Scholar
  4. Bargali SS, Singh SP, Singh R (1992) Structure and function of an age series of eucalyptus plantations in central Himalaya. I Dry matter dynamics. Ann Bot 69:405–411CrossRefGoogle Scholar
  5. Basuki TM, Vanlake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the aboveground bio-mass in tropical lowland Dipterocarp forests. For Ecol Manage 257:1684–1694CrossRefGoogle Scholar
  6. Black CA (1965) Methods of soil analysis. American Society of Agronomy, Part I, Madison WIGoogle Scholar
  7. Bohre P, Chaubey OP, Singhal P (2012) Biomass accumulation and carbon sequestration in Dalbergia sissoo Roxb. Int J Bio-Sci Bio-Technol 4(3):29–44Google Scholar
  8. Bolin BBR, Doos J Jager, Warrick R (1986) The greenhouse effect, climatic change and ecosystems. SCOPE 29. Wiley, Chichester, pp 93–155Google Scholar
  9. Canadell JG, Pataki D, Gifford R, Houghton RA, Lou Y, Raupach MR, Smith P, Steffen W (2007) In: Canadell JG, Pataki D, Pitelka L (eds) Terrestrial Ecosystems in a Changing World, (IGBP Series). Springer, Heidelberg, pp 59–78CrossRefGoogle Scholar
  10. Chauhan SK, Gupta N, Ritu S Yadav, Chauhan R (2009) Biomass and carbon allocation in different parts of agroforestry tree species. Indian For 135:981–993Google Scholar
  11. Chavan BL, Rasal GB (2012) Total sequestered carbon stock of Mangifera indica. J Environ Earth Sci 2(1):37–49Google Scholar
  12. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):78–99CrossRefGoogle Scholar
  13. Goswami S, Verma KS, Kaushal P (2014) Biomass and carbon sequestration in different agroforestry systems of a Western Himalayan watershed. Biol Agric Hortic 30(2):88–96CrossRefGoogle Scholar
  14. Guo Z, Fang J, Pan Y, Birdsey R (2010) Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For Ecol Manage 259:1225–1231CrossRefGoogle Scholar
  15. Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797CrossRefPubMedGoogle Scholar
  16. Indian Horticulture Database (2014) National horticultre board. Ministry of Agricultre, Govt. of India, Gurgaon. http://nhb.gov.in/
  17. IPCC (2000) A special report of the intergovernmental panel on climate change. In: Watson RT, Dokken DJ (eds) Land use, land use change and forestry. WMO/UNEP, CUP, Cambridge, pp 25–51Google Scholar
  18. IPCC (2006) Guidelines for national greenhouse gas inventories. Agriculture, forestry and other landuse. Inst Glob Environ Strateg, Hayama, Jpn 4:105–125Google Scholar
  19. Iqbal MM, Khan O, Jalal-ud-din Khalid Rehman, Munir M (2009) Effect of foliar application of NAA on fruit drop, yield and physic-chemical characteristics of guava (Psidium guajava L.) Red fresh cultivar. J Agric Res 47:259–269Google Scholar
  20. Joshi NK, Dhiman RC (1992) Lopping yield studies of Grewia optiva Drummond. Van Vigyan 30(2):80–85Google Scholar
  21. Kanime N, Kaushal R, Tewari SK, Raverkar KP, Chaturvedi S, Chaturvedi OP (2013) Biomass production and carbon sequestration in different tree-based systems of central Himalayan Tarai region. For Trees Livelihoods 22(1):38–50CrossRefGoogle Scholar
  22. Ketterings QM, Coe R, Van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting aboveground tree bio-mass in the mixed secondary forests. For Ecol Manag 146:199–209CrossRefGoogle Scholar
  23. Koul DN, Panwar P (2008) Prioritizing land-management options for carbon sequestration potential. Curr Sci 95:658–663Google Scholar
  24. Lodhiyal N, Lodhiyal LS (2003) Biomass and net primary productivity of Bhabar Shisham forests in central Himalaya, India. For Ecol Manag 176:217–235CrossRefGoogle Scholar
  25. Lodhiyal LS, Singh RP, Singh SP (1995) Structure and function of an age series of poplar plantation in central Himalaya. I Dry matter dynamics. Ann Bot 76:191–199CrossRefGoogle Scholar
  26. Lott JE, Howard SB, Black CR, Ong CK (2000) Allometric estimation of aboveground biomass and leaf area in managed Grevillea robusta agroforestry systems. Agrofor Syst 49:1–15CrossRefGoogle Scholar
  27. Montes N, Gauquelin T, Badri W, Bertaudiere V, Zaoui EH (2000) A non-destructive method for estimating above- ground forest biomass in threatened woodlands. For Ecol Manag 130:37–46CrossRefGoogle Scholar
  28. Morton JF (1987) Fruits of Warm Climates. Creative Resource System Inc., Miami, FL, pp. 91–102, ISBN: 0-9610184-1-0Google Scholar
  29. Mugasha WA, Eid T, Bollandsas OM, Malimbwi RE, Chamshama SAO, Zahabu E, Katani JZ (2013) Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For Ecol Manag 310:87–101CrossRefGoogle Scholar
  30. Nabuurs GJ, Mohren YG (1995) Modelling analysisof potential carbon sequestration in selected forest types. Can J For Res 25(7):1157–1172CrossRefGoogle Scholar
  31. Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutri Soil Sci 172:10–23CrossRefGoogle Scholar
  32. Nath AJ, Das G, Das AK (2009) Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenerg 33:1188–1196CrossRefGoogle Scholar
  33. Newaj Ram (2014) Biomass and carbon stock in trees grown in agroforestry under semi-arid regions of Central India. Paper presented in World Congress on Agroforestry at Vigyan Bhavan and Kempinski Ambience on 14 February 2014 Delhi, India. WCA 2014-044Google Scholar
  34. NOAA (2014) National Oceanic and Atmospheric Administration website: http://www.esrl.noaa.gov/gmd/ccgg/trends/. Assessed 01 Aug 2014
  35. Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and Southern Canada. Agr Ecosyst Environ 104:359–377CrossRefGoogle Scholar
  36. Palm CA, Tomich T, Van Noordwijk M, Vosti S, Alegre J, Gockowski J, Verchot L (2004) Mitigating GHG emissions in the humid tropics: case studies from the Alternatives to Slash-and-Burn Program. ASB Environ Dev Sust 6:145–162CrossRefGoogle Scholar
  37. Phani Kumar G, Pal Murugan M, Murkute AA, Singh S (2010) A carbon sequestration strategy involving temperate fruit crops in the trans-Himalayan region. J Hortic Sci Biotechnol 85(5):405–409CrossRefGoogle Scholar
  38. Post WM, Pengh TH, Emanuel W, King AW, Dale VH, Delnglis (1990) The global carbon cycle. Atmos Sci 78:310–326Google Scholar
  39. Raizada A, Jayaprakash J, Rathore AC, Tomar JMS (2013) Distribution of fine root biomass of fruit and forest tree species raised on old river bed lands in the North West Himalaya. Trop Ecol 54(2):251–261Google Scholar
  40. Rathore AC, Lal H, Jayaprakash J, Chaturvedi OP (2011) Productivity evaluation of Indian gooseberry cultivars on degraded lands under rainfed condition of North West Himalaya. Indian J Soil Conserv 39(1):63–66Google Scholar
  41. Rathore AC, Raizada A, Jayaprakash J, Sharda VN (2012) Impact of chilling injury on common fruit plants in the Doon Valley. Curr Sci 102(8):1107–1111Google Scholar
  42. Rathore AC, Saroj PL, Lal H, Sharma NK, Jayaprakash J, Chaturvedi OP, Raizada A, Tomar JMS, Dogra P (2013) Performance of mango based agri-horticultural models under rainfed situation of North Western Himalaya, India. Agrofor Syst 39(1):63–66. doi: 10.1007/s10457-013-9646-5 Google Scholar
  43. Rathore AC, Lal H, Sharma NK, Jayaprakash J, Mehta H, chaturvedi OP (2014) Livelihood security through Litchi (Litchi chinensis L.)-based agri-horticultural models for resource-poor communities of Indian Sub-Himalaya. Curr Sci 106(11):1081–1484Google Scholar
  44. Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Christopher BF (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci 14:10288–10293CrossRefGoogle Scholar
  45. Ravindranath NH, Somasekhar BS, Gadgil M (1997) Carbon flows in Indian forest. Clim Chang 35:297–320CrossRefGoogle Scholar
  46. Rizvi RH, Dhyani SK, Yadav RS, Singh R (2011) Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr Sci 100(5):736–742Google Scholar
  47. Segura M, Kanninen M, Suarez D (2006) Allometric models for estimating aboveground biomass of shad trees and coffee bushes grown together. Agrofor Syst 68:143–150CrossRefGoogle Scholar
  48. Singh P, Lodhiyal LS (2009) Biomass and carbon allocation in 8-year-old Poplar (Populus deltoides Marsh) plantation in tarai agroforestry systems of Central Himalaya, India. New York Sci J 2:49–53Google Scholar
  49. Singh B, Mishra PN (1995) Biomass, energy content and fuel wood properties of Populus deltoides clones raised in north Indian plains. Indian J For 18(4):278–284Google Scholar
  50. Somarriba E (1985) Arboles de guayaba (Psidium guajava L.) en pastizales. 1. Producion de fruta y potencial de dispersion de semillas. Turrialba 35(3):289–295Google Scholar
  51. Updegraff K, Baughman MJ, Taff SJ (2004) Environmental benefits of cropland conversion to hybrid poplar: economic and policy considerations. Biomass Bioenerg 27:411–428CrossRefGoogle Scholar
  52. Verma A, Kaushal R, Alam NM, Mehta H, Chaturvedi OP, Mandal D, Tomar JMS, Rathore AC, Singh C (2014) Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor syst 88:895–905CrossRefGoogle Scholar
  53. Veronica G, Luisa PP, Gerardo R (2010) Allometric relations for biomass partitioning of Nothofagus Antarctica trees of different crown classes over a site quality gradient. For Ecol Manag 259:1118–1126CrossRefGoogle Scholar
  54. Walkley AJ, Black IA (1934) An examination of the Degtareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  55. Wang X, Feng Z (1995) Atmospheric carbon sequestration through agroforestry in China. Energy 20:117–121CrossRefGoogle Scholar
  56. Watson RT, Zinyowera MC, Moss RH (1998) The regional impacts of climate change. An assessment of vulnerability. A special report by the Intergovernmental Pannel on Climate Change, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. C. Rathore
    • 1
  • Abhishek Kumar
    • 2
  • J. M. S. Tomar
    • 1
  • J. Jayaprakash
    • 1
  • H. Mehta
    • 1
  • R. Kaushal
    • 1
  • N. M. Alam
    • 1
  • A. K. Gupta
    • 1
  • A. Raizada
    • 1
  • O. P. Chaturvedi
    • 1
  1. 1.ICAR-Indian Institute of Soil and Water ConservationDehradunIndia
  2. 2.ICAR-Central Arid Zone research Institute, Regional Research stationJaisalmerIndia

Personalised recommendations