Skip to main content
Log in

Tip-cell behavior is regulated by transcription factor FoxO1 under hypoxic conditions in developing mouse retinas

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Forkhead box protein O1 (FoxO1) is a transcription factor and a critical regulator of angiogenesis. Various environmental stimuli, including growth factors, nutrients, shear stress, oxidative stress and hypoxia, affect FoxO1 subcellular localization and strongly influence its transcriptional activity; however, FoxO1-localization patterns in endothelial cells (ECs) during development have not been clarified in vivo. Here, we reported that FoxO1 expression was observed in three layers of angiogenic vessels in developing mouse retinas and that among these layers, the front layer showed high levels of FoxO1 expression in the nuclei of most tip ECs. Because tip ECs migrate toward the avascular hypoxic area, we focused on hypoxia as a major stimulus regulating FoxO1 subcellular localization in tip cells. In cultured ECs, FoxO1 accumulated into the nucleus under hypoxic conditions, with hypoxia also inducing expression of tip-cell-specific genes, including endothelial-specific molecule 1 (ESM1), which was suppressed by FoxO1 knockdown. Additionally, in murine models, EC-specific FoxO1 deletion resulted in reduced ESM1 expression and suppressed tip-cell migration during angiogenesis. These findings indicated roles for FoxO1 in tip-cell migration and that its transcriptional activity is regulated by hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177. https://doi.org/10.1083/jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by Notch. Dev Cell 16:196–208. https://doi.org/10.1016/j.devcel.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  3. Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M et al (2009) The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135. https://doi.org/10.1016/j.cell.2009.03.025

    Article  CAS  PubMed  Google Scholar 

  4. del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivee B et al (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116:4025–4033. https://doi.org/10.1182/blood-2010-02-270819

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arima S, Nishiyama K, Ko T, Arima Y, Hakozaki Y, Sugihara K et al (2011) Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138:4763–4776. https://doi.org/10.1242/dev.068023

    Article  CAS  PubMed  Google Scholar 

  6. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a006569

    PubMed  PubMed Central  Google Scholar 

  7. Leveen P, Pekny M, Gebremedhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF-B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887. https://doi.org/10.1101/gad.8.16.1875

    Article  CAS  PubMed  Google Scholar 

  8. Strasser GA, Kaminker JS, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115(24):5102–5110. https://doi.org/10.1182/blood-2009-07-230284

    Article  CAS  PubMed  Google Scholar 

  9. Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104:3225–3230. https://doi.org/10.1073/pnas.0611177104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C-elegans. Nature 389:994–999

    Article  CAS  PubMed  Google Scholar 

  11. Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K et al (2004) Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 279:34741–34749. https://doi.org/10.1074/jbc.M314214200

    Article  CAS  PubMed  Google Scholar 

  12. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, Lim R et al (2016) FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529:216–226. https://doi.org/10.1038/nature16498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biggs WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96:7421–7426. https://doi.org/10.1073/pnas.96.13.7421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Essers MAG, Weijzen S, de Vries-Smits AMM, Saarloos I, de Ruiter ND, Bos JL et al (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23:4802–4812. https://doi.org/10.1038/sj.emboj.7600476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Forde A, Constien R, Grone HJ, Hammerling G, Arnold B (2002) Temporal Cre-mediated recombination exclusively in endothelial cells using Tie2 regulatory elements. Genesis 33:191–197. https://doi.org/10.1002/gene.10117

    Article  CAS  PubMed  Google Scholar 

  16. Miyazaki S, Minamida R, Furuyama T, Tashiro F, Yamato E, Inagaki S et al (2012) Analysis of Foxo1-regulated genes using Foxo1-deficient pancreatic beta cells. Genes Cells 17:758–767. https://doi.org/10.1111/j.1365-2443.2012.01625.x

    Article  CAS  PubMed  Google Scholar 

  17. Abid R, Guo SD, Minami T, Spokes KC, Ueki K, Skurk C et al (2004) Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol 24:294–300. https://doi.org/10.1161/01.atv.0000110502.10593.06

    Article  CAS  PubMed  Google Scholar 

  18. Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H et al (2007) Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal 19:519–527. https://doi.org/10.1016/j.cellsig.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  19. van den Berg MCW, Burgering BMT (2011) Integrating opposing signals toward Forkhead Box O. Antiox Redox Signal 14:607–621. https://doi.org/10.1089/ars.2010.3415

    Article  Google Scholar 

  20. Awad H, Nolette N, Hinton M, Dakshinamurti S (2014) AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Ped Pulmonol 49:885–897. https://doi.org/10.1002/ppul.22919

    Article  Google Scholar 

  21. Chow KT, Timblin GA, McWhirter SM, Schlissel MS (2013) MK5 activates Rag transcription via Foxo1 in developing B cells. J Exp Med 210:1621–1634. https://doi.org/10.1084/jem.20130498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD et al (2007) Delta-like ligand 4 (DII4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104:3219–3224. https://doi.org/10.1073/pnas.0611206104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shin JW, Huggenberger R, Detmar M (2008) Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood 112:2318–2326. https://doi.org/10.1182/blood-2008-05-156331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rocha SF, Schiller M, Jing D, Li H, Butz S, Vestweber D et al (2014) Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ Res 115:581. https://doi.org/10.1161/circresaha.115.304718

    Article  CAS  PubMed  Google Scholar 

  25. Huang HJ, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487. https://doi.org/10.1242/jcs.001222

    Article  CAS  PubMed  Google Scholar 

  26. Park DY, Lee J, Kim J, Kim K, Hong S, Han S et al (2017) Plastic roles of pericytes in the blood-retinal barrier. Nat Commun 8:16. https://doi.org/10.1038/ncomms15296

    Article  Google Scholar 

  27. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487-U115. https://doi.org/10.1038/nature08995

    Article  Google Scholar 

  28. Jeltsch M, Leppanen VM, Saharinen P, Alitalo K (2013) Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a009183

    PubMed  PubMed Central  Google Scholar 

  29. Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ et al (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–669. https://doi.org/10.1182/blood-2004-07-2958

    Article  CAS  PubMed  Google Scholar 

  30. Bechard D, Gentina T, Delehedde M, Scherpereel A, Lyon M, Aumercier M et al (2001) Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity. J Biol Chem 276:48341–48349. https://doi.org/10.1074/jbc.M108395200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bernd Arnold for Tie2CreER T 2mice and Manabu Sakai for helpful discussion.

Funding

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (24590258 and 15K08142 to TF; 16K08442 to SI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinobu Inagaki or Tatsuo Furuyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (JPEG 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukumoto, M., Kondo, K., Uni, K. et al. Tip-cell behavior is regulated by transcription factor FoxO1 under hypoxic conditions in developing mouse retinas. Angiogenesis 21, 203–214 (2018). https://doi.org/10.1007/s10456-017-9588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-017-9588-z

Keywords

Navigation