Skip to main content
Log in

Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only because angiogenesis plays an important role in various pathologies, but also since endothelial cell surface receptors are directly accessible for relatively large circulating nanoparticles. Typically, nanoparticle targeting towards these receptors is studied by analyzing the contrast distribution on tumor images acquired before and at set time points after administration. Although several exciting proof-of-concept studies demonstrated qualitative assessment of relative target concentration and distribution, these studies did not provide quantitative information on the nanoparticle targeting kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging, and using compartment modeling we were able to quantify nanoparticle targeting rates. As such, this approach can facilitate optimization of targeted nanoparticle design and it holds promise for providing more quantitative information on in vivo receptor levels. Interestingly, we also observed a periodicity in the accumulation kinetics of αvβ3-integrin targeted nanoparticles and hypothesize that this periodicity is caused by receptor binding, internalization and recycling dynamics. Taken together, this demonstrates that our experimental approach provides new insights in in vivo nanoparticle targeting, which may proof useful for vascular targeting in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lobatto ME, Fuster V, Fayad ZA, Mulder WJ (2011) Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 10(11):835–852. doi:10.1038/nrd3578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Choi KY, Liu G, Lee S, Chen X (2012) Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4(2):330–342. doi:10.1039/c1nr11277e

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Lanza GM, Wallace KD, Scott MJ, Cacheris WP, Abendschein DR, Christy DH, Sharkey AM, Miller JG, Gaffney PJ, Wickline SA (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94(12):3334–3340

    Article  CAS  PubMed  Google Scholar 

  4. Mulder WJ, van der Schaft DW, Hautvast PA, Strijkers GJ, Koning GA, Storm G, Mayo KH, Griffioen AW, Nicolay K (2007) Early in vivo assessment of angiostatic therapy efficacy by molecular MRI. FASEB J 21(2):378–383. doi:10.1096/fj.06-6791com

    Article  CAS  PubMed  Google Scholar 

  5. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377. doi:10.1038/nm1486

    Article  CAS  PubMed  Google Scholar 

  6. Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, Lacy EK, Zhang H, Robertson JD, Wickline SA, Lanza GM (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63(18):5838–5843

    CAS  PubMed  Google Scholar 

  7. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. doi:10.1038/nmat2442

    Article  CAS  PubMed  Google Scholar 

  8. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol imaging 9(6):291–310

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187. doi:10.1016/j.jconrel.2011.09.063

    Article  CAS  PubMed  Google Scholar 

  10. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  11. Ocak I, Baluk P, Barrett T, McDonald DM, Choyke P (2007) The biologic basis of in vivo angiogenesis imaging. Front Biosci 12:3601–3616

    Article  CAS  PubMed  Google Scholar 

  12. O’Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin oncol 9(3):167–177. doi:10.1038/nrclinonc.2012.2

    Article  PubMed  Google Scholar 

  13. Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16(1):117–131

    Article  CAS  PubMed  Google Scholar 

  14. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5(4):584–590. doi:10.1038/jcbfm.1985.87

    Article  CAS  PubMed  Google Scholar 

  15. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17(2):357–367

    Article  CAS  PubMed  Google Scholar 

  16. Backer MV, Backer JM (2012) Imaging key biomarkers of tumor angiogenesis. Theranostics 2(5):502–515. doi:10.7150/thno.3623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6, Supplement 16):15–18. doi:10.1016/S0093-7754(02)70065-1

    Article  CAS  PubMed  Google Scholar 

  18. McKeage MJ, Baguley BC (2010) Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 116(8):1859–1871. doi:10.1002/cncr.24975

    Article  CAS  PubMed  Google Scholar 

  19. Liu Z, Wang F, Chen X (2008) Integrin alpha(v)beta(3)-targeted cancer therapy. Drug Dev Res 69(6):329–339. doi:10.1002/ddr.20265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4(5):623–626

    Article  CAS  PubMed  Google Scholar 

  21. Tateishi U, Oka T, Inoue T (2012) Radiolabeled RGD peptides as integrin alpha(v)beta3-targeted PET tracers. Curr Med Chem 19(20):3301–3309

    Article  CAS  PubMed  Google Scholar 

  22. Caswell PT, Norman JC (2006) Integrin trafficking and the control of cell migration. Traffic 7(1):14–21. doi:10.1111/j.1600-0854.2005.00362.x

    Article  CAS  PubMed  Google Scholar 

  23. Kok MB, Hak S, Mulder WJ, van der Schaft DW, Strijkers GJ, Nicolay K (2009) Cellular compartmentalization of internalized paramagnetic liposomes strongly influences both T1 and T2 relaxivity. Magn Reson Med 61(5):1022–1032. doi:10.1002/mrm.21910

    Article  CAS  PubMed  Google Scholar 

  24. Roberts M, Barry S, Woods A, van der Sluijs P, Norman J (2001) PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr Biol 11(18):1392–1402

    Article  CAS  PubMed  Google Scholar 

  25. Janssen APCA, Schiffelers RM, ten Hagen TLM, Koning GA, Schraa AJ, Kok RJ, Storm G, Molema G (2003) Peptide-targeted PEG-liposomes in anti-angiogenic therapy. Int J Pharm 254(1):55–58. doi:10.1016/S0378-5173(02)00682-8

    Article  CAS  PubMed  Google Scholar 

  26. Hak S, Helgesen E, Hektoen HH, Huuse EM, Jarzyna PA, Mulder WJ, Haraldseth O, Davies C de L (2012) The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano 6(6):5648–5658. doi:10.1021/nn301630n

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Seymour LW (1992) Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carr Syst 9(2):135–187

    CAS  Google Scholar 

  28. Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, Chen W, Griffioen AW, Fayad ZA, Mulder WJ (2009) Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials 30(36):6947–6954. doi:10.1016/j.biomaterials.2009.09.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Erikson A, Tufto I, Bjonnum AB, Bruland OS, Davies C de L (2008) The impact of enzymatic degradation on the uptake of differently sized therapeutic molecules. Anticancer Res 28(6A):3557–3566

    PubMed  Google Scholar 

  30. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7(1):91–101

    Article  CAS  PubMed  Google Scholar 

  31. Larsson HB, Fritz-Hansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35(5):716–726

    Article  CAS  PubMed  Google Scholar 

  32. Parker GJM, Padhani AR (2004) T1-W DCE-MRI: T1-weighted dynamic contrast-enhanced MRI. In: Quantitative MRI of the brain. Wiley, Ltd, pp 341–364. doi:10.1002/0470869526.ch10

  33. Larsson HB, Courivaud F, Rostrup E, Hansen AE (2009) Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 62(5):1270–1281. doi:10.1002/mrm.22136

    Article  PubMed  Google Scholar 

  34. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7. doi:10.1038/jcbfm.1983.1

    Article  CAS  PubMed  Google Scholar 

  35. Mulder WJ, Strijkers GJ, Habets JW, Bleeker EJ, van der Schaft DW, Storm G, Koning GA, Griffioen AW, Nicolay K (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19(14):2008–2010. doi:10.1096/fj.05-4145fje

    CAS  PubMed  Google Scholar 

  36. Jarzyna PA, Deddens LH, Kann BH, Ramachandran S, Calcagno C, Chen W, Gianella A, Dijkhuizen RM, Griffioen AW, Fayad ZA, Mulder WJ (2012) Tumor angiogenesis phenotyping by nanoparticle-facilitated magnetic resonance and near-infrared fluorescence molecular imaging. Neoplasia 14(10):964–973

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Schiffelers RM, Koning GA, ten Hagen TL, Fens MH, Schraa AJ, Janssen AP, Kok RJ, Molema G, Storm G (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91(1–2):115–122

    Article  CAS  PubMed  Google Scholar 

  38. Neubauer AM, Sim H, Winter PM, Caruthers SD, Williams TA, Robertson JD, Sept D, Lanza GM, Wickline SA (2008) Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging. Magn Reson Med 60(6):1353–1361. doi:10.1002/mrm.21795

    Article  PubMed Central  PubMed  Google Scholar 

  39. Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8(3):214–222. doi:10.1593/neo.05769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. van de Ven AL, Kim P, Haley O, Fakhoury JR, Adriani G, Schmulen J, Moloney P, Hussain F, Ferrari M, Liu X, Yun SH, Decuzzi P (2012) Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release 158(1):148–155. doi:10.1016/j.jconrel.2011.10.021

    Article  PubMed Central  PubMed  Google Scholar 

  41. Terreno E, Geninatti Crich S, Belfiore S, Biancone L, Cabella C, Esposito G, Manazza AD, Aime S (2006) Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 55(3):491–497. doi:10.1002/mrm.20793

    Article  CAS  PubMed  Google Scholar 

  42. Strijkers GJ, Hak S, Kok MB, Springer CS Jr, Nicolay K (2009) Three-compartment T1 relaxation model for intracellular paramagnetic contrast agents. Magn Reson Med 61(5):1049–1058. doi:10.1002/mrm.21919

    Article  PubMed  Google Scholar 

  43. Oostendorp M, Douma K, Hackeng TM, van Zandvoort MA, Post MJ, Backes WH (2010) Pharmacokinetics of contrast agents targeted to the tumor vasculature in molecular magnetic resonance imaging. Contrast Media Mol Imaging 5(1):9–17. doi:10.1002/cmmi.361

    CAS  PubMed  Google Scholar 

  44. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    CAS  PubMed  Google Scholar 

  45. Wang X, Wang Y, Chen X, Wang J, Zhang X, Zhang Q (2009) NGR-modified micelles enhance their interaction with CD13-overexpressing tumor and endothelial cells. J Control Release 139(1):56–62. doi:10.1016/j.jconrel.2009.05.030

    Article  CAS  PubMed  Google Scholar 

  46. Negussie AH, Miller JL, Reddy G, Drake SK, Wood BJ, Dreher MR (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release 143(2):265–273. doi:10.1016/j.jconrel.2009.12.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lakhotia S, Bauer KD, Papoutsakis ET (1993) Fluid-mechanical forces in agitated bioreactors reduce the CD13 and CD33 surface protein content of HL60 cells. Biotechnol Bioeng 41(9):868–877. doi:10.1002/bit.260410906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank K. Sæterbø for implanting the dorsal window chambers in mice and culturing cells, S. Andersen, K. Pettersen and S. Moestue for providing and taking care of the mice with subcutaneous xenografts used in the in vivo MRI experiments, and B. Ytterhus and L. Dyrnes for preparation of the histological tumor sections. The work was supported by the Norwegian Cancer Society and Medical Imaging Laboratory (MI-lab, NTNU, Norway) and the National Institute of Health National Cancer Institute Grant R01 CA155432 (W.J.M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjoerd Hak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 3914 kb)

Supplementary material 2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hak, S., Cebulla, J., Huuse, E.M. et al. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy. Angiogenesis 17, 93–107 (2014). https://doi.org/10.1007/s10456-013-9380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9380-7

Keywords

Navigation