Asahara T, Murohara T, Sullivan A, Silver M, Van Der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967
PubMed
Article
CAS
Google Scholar
Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228
PubMed
CAS
Google Scholar
Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438
PubMed
Article
CAS
Google Scholar
Masuda H, Kalka C, Asahara T (2000) Endothelial progenitor cells for regeneration. Hum Cell 13(4):153–160
PubMed
CAS
Google Scholar
Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, Gurtner GC (2005) Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105(3):1068–1077
PubMed
Article
CAS
Google Scholar
Ingram DA, Krier TR, Mead LE, McGuire C, Prater DN, Bhavsar J, Saadatzadeh MR, Bijangi-Vishehsaraei K, Li F, Yoder MC, Haneline LS (2007) Clonogenic endothelial progenitor cells are sensitive to oxidative stress. Stem Cells 25(2):297–304
PubMed
Article
CAS
Google Scholar
Fujinaga H, Baker CD, Ryan SL, Markham NE, Seedorf GJ, Balasubramaniam V, Abman SH (2009) Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants. Am J Physiol Lung Cell Mol Physiol 297(6):L1160–L1169
PubMed
Article
CAS
Google Scholar
Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmeler S (2004) Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood 104(12):3591–3597
PubMed
Article
CAS
Google Scholar
He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, Katusic ZS (2004) Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol 24(11):2021–2027
PubMed
Article
CAS
Google Scholar
Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395
PubMed
Article
CAS
Google Scholar
Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149(1):293–305
PubMed
CAS
Google Scholar
Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439
PubMed
Article
CAS
Google Scholar
Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676
PubMed
Article
CAS
Google Scholar
Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29(6):789–791
PubMed
Article
CAS
Google Scholar
Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98(5):2604–2609
PubMed
Article
CAS
Google Scholar
Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch KD (1992) Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem 267(21):14519–14522
PubMed
CAS
Google Scholar
Gooch KJ, Dangler CA, Frangos JA (1997) Exogenous, basal and flow-induced nitric oxide production and endothelial cell proliferation. J Cell Physiol 171(3):252–258
PubMed
Article
CAS
Google Scholar
Dimmeler S, Zeiher AM (1999) Nitric oxide-an endothelial cell survival factor. Cell Death Differ 6(10):964–968
PubMed
Article
CAS
Google Scholar
Dimmeler S, Dernbach E, Zeiher AM (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477(3):258–262
PubMed
Article
CAS
Google Scholar
Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101(11):2567–2578
PubMed
Article
CAS
Google Scholar
Ziche M, Morbidelli L (2000) Nitric oxide and angiogenesis. J Neurooncol 50(1–2):139–148
PubMed
Article
CAS
Google Scholar
Parenti A, Morbidelli L, Cui X-L, Douglas JG, Hood JD, Granger HJ, Ledda F, Ziche M (1998) Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase(1/4) activation in postcapillary endothelium. J Biol Chem 273(7):4220–4226
PubMed
Article
CAS
Google Scholar
Al-Ani B, Hewett PW, Ahmed S, Cudmore M, Fujisawa T, Ahmad S, Ahmed A (2006) The release of nitric oxide from S-nitrosothiols promotes angiogenesis. PLoS One 1:e25
PubMed
Article
Google Scholar
Pyriochou A, Beis D, Koika V, Potytarchou C, Papadimitriou E, Zhou Z, Papapetropoulos AJ (2006) Soluble guanylyl cyclase activation promotes angiogenesis. J Pharmacol Exp Ther 319(2):663–671
PubMed
Article
CAS
Google Scholar
Leitman DC, Fiscus RR, Murad F (1986) Forskolin, phosphodiesterase inhibitors, and cyclic AMP analogs inhibit proliferation of cultured bovine aortic endothelial cells. J Cell Physiol 127(2):237–243
PubMed
Article
CAS
Google Scholar
Favot L, Keravis T, Holl V, Le Bec A, Lugnier C (2003) VEGF-induced HUVEC migration and proliferation are decreased by PDE2 and PDE4 inhibitors. Thromb Haemost 90(2):334–343
PubMed
CAS
Google Scholar
Pyriochou A, Papapetropoulos A (2005) Soluble guanylyl cyclase: more secrets revealed. Cell Signal 17(4):407–413
PubMed
Article
CAS
Google Scholar
Cooper DM (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375(Pt3):517–529
PubMed
Article
CAS
Google Scholar
Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366–398
PubMed
Article
CAS
Google Scholar
Netherton SJ, Maurice DH (2005) Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Mol Pharmacol 67(1):263–272
PubMed
Article
CAS
Google Scholar
Papapetropoulos A, Cziraki A, Rubin JW, Stone CD, Catravas JD (1996) cGMP accumulation and gene expression of soluble guanylate cyclase in human vascular tissue. J Cell Physiol 167(2):213–221
PubMed
Article
CAS
Google Scholar
Creighton JR, Masada N, Cooper DM, Stevens T (2003) Coordinate regulation of membrane cAMP by Ca2+-inhibited adenylyl cyclase and phosphodiesterase activities. Am J Physiol Lung Cell Mol Physiol 284(1):L100–L107
PubMed
CAS
Google Scholar
Karbanova J, Mokry J (2002) Histological and histochemical analysis of embryoid bodies. Acta Histochem 104(4):361–365
PubMed
Article
Google Scholar
Evans AL, Bryant J, Skepper J, Smith S, Print CG, Charnock-Jones DS (2007) Vascular development in embryoid bodies: quantification of transgenic intervention and antiangiogenic treatment. Angiogenesis 10(3):217–226
PubMed
Article
Google Scholar
Jakobsson L, Kreuger J, Claesson-Welsh L (2007) Building blood vessels-stem cell models in vascular biology. J Cell Biol 177(5):751–755
PubMed
Article
CAS
Google Scholar
Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386
Google Scholar
Murphy CL, Polak JM (2002) Differentiating embryonic stem cells: GAPDH, but neither HPRT nor beta-tubulin is suitable as an internal standard for measuring RNA levels. Tissue Eng 8(4):551–559
PubMed
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408
PubMed
Article
CAS
Google Scholar
Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118(2):489–498
PubMed
CAS
Google Scholar
Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin-Sisteron H, Uzan G, Dejana E (1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88(9):3424–3431
PubMed
CAS
Google Scholar
Case J, Ingram DA, Haneline LS (2008) Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal 10(11):1895–1907
PubMed
Article
CAS
Google Scholar
Bautch VL, Redick SD, Scalia A, Harmaty M, Carmeliet P, Rapoport R (2000) Characterization of the vasculogenic block in the absence of vascular endothelial growth factor-A. Blood 95(6):1979–1987
PubMed
CAS
Google Scholar
Gerassimou C, Kotanidou A, Zhou Z, Simoes DC, Roussos C, Papapetropoulos A (2007) Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species. Br J Pharmacol 150(8):1084–1091
PubMed
Article
CAS
Google Scholar
Papapetropoulos A, Abou-Mohamed G, Marczin N, Murad F, Caldwell RW, Catravas JD (1996) Downregulation of nitrovasodilator-induced cyclic GMP accumulation in cells exposed to endotoxin or interleukin-1 beta. Br J Pharmacol 118(6):1359–1366
PubMed
CAS
Google Scholar
Hoffmann LS, Schmidt PM, Keim Y, Schaefer S, Schmidt HH, Stasch JP (2009) Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation. Br J Pharmacol 157(5):781–795
PubMed
Article
CAS
Google Scholar
Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D (2006) Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest 116(6):1731–1737
PubMed
Article
CAS
Google Scholar
Krumenacker JS, Murad F (2006) NO-cGMP signaling in development and stem cells. Mol Genet Metab 87(4):311–314
PubMed
Article
CAS
Google Scholar
Pyriochou A, Zhou Z, Koika V, Petrou C, Cordopatis P, Sessa WC, Papapetropoulos A (2007) The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. J Cell Physiol 211(1):197–204
PubMed
Article
CAS
Google Scholar
Aicher A, Heeschen C, Feil S, Hofmann F, Mendelsohn ME, Feil R, Dimmeler S (2009) cGMP-dependent protein kinase I is crucial for angiogenesis and postnatal vasculogenesis. PLoS One 4(3):e4879
PubMed
Article
Google Scholar
Senthilkumar A, Smith RD, Khitha J, Arora N, Veerareddy S, Langston W, Chidlow JH Jr, Barlow SC, Teng X, Patel RP, Lefer DJ, Kevil CG (2007) Sildenafil promotes ischemia-induced angiogenesis through a PKG-dependent pathway. Arterioscler Thromb Vasc Biol 27(9):1947–1954
PubMed
Article
CAS
Google Scholar
Dussault S, Maingrette F, Ménard C, Michaud SE, Haddad P, Groleau J, Turgeon J, Perez G, Rivard A (2009) Sildenafil increases endothelial progenitor cell function and improves ischemia-induced neovascularization in hypercholesterolemic apolipoprotein E-deficient mice. Hypertension 54(5):1043–1049
PubMed
Article
CAS
Google Scholar
Mujoo K, Krumenacker JS, Wada Y, Murad F (2006) Differential expression of nitric oxide signaling components in undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev 15(6):779–787
PubMed
Article
CAS
Google Scholar
Cooper DM (2005) Compartmentalization of adenylate cyclase and cAMP signalling. Biochem Soc Trans 33(Pt6):1319–1322
PubMed
CAS
Google Scholar
Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101(2):125–136
PubMed
Article
CAS
Google Scholar
DeFouw LM, DeFouw DO (2001) Differential phosphodiesterase activity contributes to restrictive endothelial barrier function during angiogenesis. Microvasc Res 62(3):263–270
PubMed
Article
CAS
Google Scholar
Creighton J, Zhu B, Alexeyev M, Stevens T (2008) Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. J Cell Sci 121(Pt1):110–119
PubMed
Article
CAS
Google Scholar
Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K, Mochizuki N (2005) Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 25(1):136–146
PubMed
Article
CAS
Google Scholar
Abraham S, Yeo M, Montero-Balaguer M, Paterson H, Dejana E, Marshall CJ, Mavria G (2009) VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 19(8):668–674
PubMed
Article
CAS
Google Scholar