Two-step homogeneous geodesics in pseudo-Riemannian manifolds


Given a homogeneous pseudo-Riemannian space \((G/H,\langle \ , \ \rangle),\) a geodesic \(\gamma :I\rightarrow G/H\) is said to be two-step homogeneous if it admits a parametrization \(t=\phi (s)\) (s affine parameter) and vectors XY in the Lie algebra \({\mathfrak{g}}\), such that \(\gamma (t)=\exp (tX)\exp (tY)\cdot o\), for all \(t\in \phi (I)\). As such, two-step homogeneous geodesics are a natural generalization of homogeneous geodesics (i.e., geodesics which are orbits of a one-parameter group of isometries). We obtain characterizations of two-step homogeneous geodesics, both for reductive homogeneous spaces and in the general case, and undertake the study of two-step g.o. spaces, that is, homogeneous pseudo-Riemannian manifolds all of whose geodesics are two-step homogeneous. We also completely determine the left-invariant metrics \(\langle \ ,\ \rangle\) on the unimodular Lie group \(SL(2,{{\mathbb{R}}})\) such that \(\big (SL(2,{{\mathbb{R}}}),\langle \ ,\ \rangle \big )\) is a two-step g.o. space.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alekseevsky, D.V., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Amer. Math. Soc. 359, 3769–3789 (2007)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Arvanitoyeorgos, A.: Homogeneous manifolds whose geodesics are orbits. Recent results and some open problems. Irish Math. Soc. Bull. 79, 5–29 (2017)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Arvanitoyeorgos, A., Souris, N.P.: Two-step homogeneous geodesics in homogeneous spaces. Taiwanese J. Math. 20(6), 1313–1333 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Brodzki, J., Niblo, G.A., Plymen, R., Wright, N.: The local spectrum of the Dirac operator for the universal cover of \(SL_2(R)\). J. Funct. Anal. 270, 957–975 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Calvaruso, G., Marinosci, R.A.: Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups. Mediterr. J. Math. 3, 467–481 (2006)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Calvaruso, G., Marinosci, R.A.: Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three. Adv. Geom. 8, 473–489 (2008)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Calvaruso, G., Fino, A., Zaeim, A.: Homogeneous geodesics of non-reductive homogeneous pseudo-Riemannian \(4\)-manifolds. Bull. Braz. Math. Soc. 46, 1–42 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Duggal, K., Sahin, B.: Differential Geometry of Lightlike Submanifolds. Frontiers in Mathematics. Birkhauser, Basel (2010)

    Google Scholar 

  9. 9.

    Dušek, Z.: Survey on homogeneous geodesics. Note di Mat. 1, 147–168 (2008)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Dohira, R.: Geodesics in reductive homogeneous spaces. Tsukuba J. Math. 19(1), 233–243 (1995)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Dusek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71, 245–252 (2007)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in \(3\)-dimensional homogeneous affine manifolds. Acta Univ. Palack. Olomuc. 50, 29–42 (2011)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Unione Mat. Ital. 5, 189–246 (1991)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2013)

    Google Scholar 

  15. 15.

    Nikonorov, Y.G.: On the structure of geodesic orbit Riemannian spaces. Ann. Global Anal. Geom. 52(3), 289–311 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    Google Scholar 

  17. 17.

    Rahmani, S.: Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois. J. Geom. Phys. 9, 295–302 (1992)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Schmidt, B., Wolfson, J.: Complete curvature homogeneous metrics on \(SL_2(\mathbb{R})\). Pacific J. Math. 273, 499–509 (2015)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Wang, H.C.: Discrete nilpotent subgroups of Lie groups. J. Differential Geom. 3, 481–492 (1969)

    MathSciNet  Article  Google Scholar 

Download references


The first and third authors were supported by Grant \(\# E.037\) from the Research Committee of the University of Patras (Programme K. Karatheodori). The first author was supported by a Grant from the Empirikion Foundation in Athens. The second author was supported by funds of MIUR (within PRIN), GNSAGA and University of Salento. All authors appreciate the useful detailed comments suggested by the referees.

Author information



Corresponding author

Correspondence to Andreas Arvanitoyeorgos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arvanitoyeorgos, A., Calvaruso, G. & Souris, N.P. Two-step homogeneous geodesics in pseudo-Riemannian manifolds. Ann Glob Anal Geom 59, 297–317 (2021).

Download citation


  • Homogeneous space
  • Pseudo-Riemannian manifold
  • Homogeneous geodesic
  • Geodesic orbit space
  • Two-step homogeneous geodesic
  • Two-step geodesic orbit space
  • Generalized geodesic lemma
  • Lorentzian Lie group

Mathematics Subject Classification

  • Primary 53C22
  • Secondary 53C30
  • 53C50