CR Nirenberg problem and zero Wester scalar curvature


In this paper, we study the prescribing Webster scalar curvature problem on strictly pseudoconvex CR manifolds of real dimension \(2n+1\). First, we study the CR Nirenberg problem and prove some existence results. Second, we provide the existence and a positive lower bound for a solution of the CR Yamabe problem with zero Webster scalar curvature on noncompact complete manifolds.

This is a preview of subscription content, log in to check access.


  1. 1.

    Aviles, P., McOwen, R.: Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds. J. Differ. Geom. 27, 225–239 (1988)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Branson, T., Fontana, L., Morpurgo, C.: Moser–Trudinger and Beckner–Onofri’s inequalities on the CR sphere. Ann. Math. 2(177), 1–52 (2013)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cheng, J.H.: Curvature functions for the sphere in pseudohermitian geometry. Tokyo J. Math. 14, 151–163 (1991)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cheng, J.H., Chiu, H.L., Yang, P.: Uniformization of spherical CR manifolds. Adv. Math. 255, 182–216 (2014)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cheng, J.H., Malchiodi, A., Yang, P.: A positive mass theorem in three dimensional Cauchy–Riemann geometry. Adv. Math. 308, 276–347 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chtioui, H., Elmehdi, K., Gamara, N.: The Webster scalar curvature problem on the three dimensional CR manifolds. Bull. Sci. Math. 131, 361–374 (2007)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Felli, V., Uguzzoni, F.: Some existence results for the Webster scalar curvature problem in presence of symmetry. Ann. Math. Pura Appl. 4(183), 469–493 (2004)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Commun. Pure. Appl. Math. 33, 199–211 (1980)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gamara, N.: The CR Yamabe conjecture-the case n = 1. J. Eur. Math. Soc. (JEMS) 3, 105–137 (2001)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gamara, N., Yacoub, R.: CR Yamabe conjecture-the conformally flat case. Pac. J. Math. 201, 121–175 (2001)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Han, Z.C., Li, Y.Y.: On the local solvability of the Nirenberg problem on \(S^2\). Discrete Contin. Dyn. Syst. 28, 607–615 (2010)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Delanoe, P.: generalized stereographic projections with prescribed scalar curvature, geometry and nonlinear partial differential equations (Fayetteville, AR, 1990). Contemp. Math. 127, 17–25 (1992)

    Article  Google Scholar 

  13. 13.

    Ho, P.T.: Prescribed Webster scalar curvature on \(S^{2n+1}\) in the presence of reflection or rotation symmetry. Bull. Sci. Math. 140, 506–518 (2016)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ho, P.T.: The Webster scalar curvature flow on CR sphere. Part I. Adv. Math. 268, 758–835 (2015)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Ho, P.T.: The Webster scalar curvature flow on CR sphere. Part II. Adv. Math. 268, 836–905 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Ho, P.T., Kim, S.: The Yamabe problem on noncompact CR manifolds. Pac. J. Math. 285, 375–391 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Frank, R., Lieb, E.: Sharp constants in several inequalities on the Heisenberg group. Ann. Math. 2(176), 349–381 (2012)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1983)

    Google Scholar 

  19. 19.

    Jerison, D., Lee, J.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1, 1–13 (1988)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Jerison, D., Lee, J.: Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differ. Geom. 29, 303–343 (1989)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Jerison, D., Lee, J.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25, 167–197 (1987)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kim, S.: Zero scalar curvature on open manifolds. Commun. Korean Math. Soc. 13, 539–544 (1998)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Lu, G.: Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations. Publ. Mat. 40, 301–329 (1996)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Ma, L.: Conformal deformation on a noncompact Riemannian manifolds. Math. Ann. 295, 75–80 (1993)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Ma, X., McOwen, R.: Complete conformal metrics with zero scalar curvature. Proc. Am. Math. Soc. 115, 69–77 (1992)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Malchiodi, A., Uguzzoni, F.: A perturbation result in prescribing Webster curvature on the Heisenberg sphere. J. Math. Pure. Appl. 81, 983–997 (2002)

    Article  Google Scholar 

  27. 27.

    Nirenberg, L.: Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, vol. 6. American Mathematical Society, Providence (2001)

    Google Scholar 

  28. 28.

    Riahia, M., Gamara, N.: Multiplicity results for the prescribed Webster scalar curvature on the three CR sphere under flatness condition. Bull. Sci. Math. 136, 72–95 (2012)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Salem, E., Gamara, N.: The Webster scalar curvature revisited: the case of the three dimensional CR sphere. Calc. Var. Partial Differ. Equ. 42, 107–136 (2011)

    MathSciNet  Article  Google Scholar 

Download references


Kim was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2011-0025674). Ho was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2019041021), and by Korea Institute for Advanced Study (KIAS) Grant funded by the Korea government (MSIP).

Author information



Corresponding author

Correspondence to Seongtag Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ho, P.T., Kim, S. CR Nirenberg problem and zero Wester scalar curvature. Ann Glob Anal Geom (2020).

Download citation


  • CR manifold
  • CR Yamabe problem
  • Webster scalar curvature
  • CR Nirenberg problem

Mathematics Subject Classification

  • Primary 32V05
  • Secondary 53C21