Skip to main content
Log in

Vanishing theorems for the cohomology groups of free boundary submanifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we prove that there exists a universal constant C, depending only on positive integers \(n\ge 3\) and \(p\le n-1\), such that if \(M^n\) is a compact free boundary submanifold of dimension n immersed in the Euclidean unit ball \(\mathbb {B}^{n+k}\) whose size of the traceless second fundamental form is less than C, then the pth cohomology group of \(M^n\) vanishes. Also, employing a different technique, we obtain a rigidity result for compact free boundary surfaces minimally immersed in the unit ball \(\mathbb {B}^{2+k}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 120(4), 1223–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrozio, L., Carlotto, A., Sharp, B.: Index estimates for free boundary minimal hypersurfaces. Math. Ann. 370(3–4), 1063–1078 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrozio, L., Nunes, I.: A gap theorem for free boundary minimal surfaces in the three-ball. arXiv:1608.05689 [math.DG]. To appear in Communications in Analysis and Geometry

  4. An-Min, L., Jimin, L.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. (Basel) 58(6), 582–594 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Batista, M., Mirandola, H., Vitório, F.: Hardy and Rellich inequalities for submanifolds in Hadamard spaces. J. Differ. Equ. 263(9), 5813–5829 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderbank, D.M.J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173(1), 214–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chern, S.S., do Carmo, M., Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968), Springer, New York, (1970), pp. 59–75

  8. de Lima, L.L.: A Feynman–Kac formula for differential forms on manifolds with boundary and geometric applications. Pac. J. Math. 292(1), 177–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flaherty, F.: Spherical submanifolds of pinched manifolds. Am. J. Math. 89, 1109–1114 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraser, A., Schoen, R.: Uniqueness theorems for free boundary minimal disks in space forms. Int. Math. Res. Not. IMRN 1(17), 8268–8274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herzlich, M.: Refined Kato inequalities in Riemannian geometry, Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), University of Nantes, Nantes, pp. Exp. No. VI, 11 (2000)

  12. Howard, R., Wei, S.W.: Inequalities relating sectional curvatures of a submanifold to the size of its second fundamental form and applications to pinching theorems for submanifolds. Proc. Am. Math. Soc. 94(4), 699–702 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawson Jr., H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. (2) 89, 187–197 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lawson Jr., H.B., Simons, J.: On stable currents and their application to global problems in real and complex geometry. Ann. Math. (2) 98, 427–450 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leung, P.F.: Minimal submanifolds in a sphere. Math. Z. 183(1), 75–86 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leung, P.F.: On a relation between the topology and the intrinsic and extrinsic geometries of a compact submanifold. Proc. Edinb. Math. Soc. (2) 28(3), 305–311 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, H.: On the structure of submanifolds in Euclidean space with flat normal bundle. Results Math. 68(3–4), 313–329 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shiohama, K., Hongwei, X.: The topological sphere theorem for complete submanifolds. Compositio Math. 107(2), 221–232 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Simons, J.: Minimal varieties in riemannian manifolds. Ann. Math. (2) 88, 62–105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, H.W.: A rigidity theorem for submanifolds with parallel mean curvature in a sphere. Arch. Math. (Basel) 61(5), 489–496 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yano, K.: Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, vol. 1. Marcel Dekker, Inc., New York (1970)

    Google Scholar 

  22. Yau, S.T.: Submanifolds with constant mean curvature. I, II, Am. J. Math. 96, 346–366 (1974)

    MathSciNet  MATH  Google Scholar 

  23. Yau, Shing Tung: Submanifolds with constant mean curvature. II Amer. J. Math. 97, 76–100 (1975)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Levi Lima and Ezequiel Barbosa for their interest and helpful discussions about this work. The authors were partially supported by CNPq-Brazil, CAPES-Brazil and FAPEAL-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos P. Cavalcante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcante, M.P., Mendes, A. & Vitório, F. Vanishing theorems for the cohomology groups of free boundary submanifolds. Ann Glob Anal Geom 56, 137–146 (2019). https://doi.org/10.1007/s10455-019-09660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-019-09660-1

Keywords

Mathematics Subject Classification

Navigation