Advertisement

Annals of Global Analysis and Geometry

, Volume 56, Issue 1, pp 1–15 | Cite as

Brown–York mass and positive scalar curvature II: Besse’s conjecture and related problems

  • Yi Fang
  • Wei YuanEmail author
Article
  • 128 Downloads

Abstract

The Besse’s conjecture was posed on the well-known book Einstein manifolds by Arthur L. Besse, which describes critical points of Hilbert–Einstein functional with constraint of unit volume and constant scalar curvature. In this article, we show that there is an interesting connection between Besse’s conjecture and positive mass theorem for Brown–York mass. With the aid of positive mass theorem, we investigate the geometric structure of CPE manifolds and this provides us further understandings about Besse’s conjecture. As a related topic, we also discuss corresponding results for V-static metrics.

Keywords

Besse’s conjecture Brown–York mass Positive mass theorem Scalar curvature V-static metric 

Notes

Acknowledgements

We would like to express our appreciations to Professor Qing Jie for his constant support and encouragements. We would like to thank Professor Li Tong-Zhu for inspiring discussions back in University of California, Santa Cruz, and also the referee for his/her valuable comments.

References

  1. 1.
    Barros, A., Ribeiro Jr., E.: Critical point equation on four-dimensional compact manifolds. Math. Nachr. 287, 1618–1623 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Batisa, R., Diógenes, R., Ranier, M., Ribeiro Jr., E.: Critical metrics of the volume functional on compact three-manifolds with smooth boundary. J. Geom. Anal. 27, 1530–1547 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Besse, A.L.: Einstein Manifolds. Springer, New York (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bunting, G., Masood-ul-Alam, A.K.M.: Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time. Gen. Relativ. Gravit. 19, 147–154 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chang, J., Hwang, S.: Critical points and warped product metrics. Bull. Korean Math. Soc. 41(1), 117–123 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chang, J., Hwang, S., Yun, G.: Critical point equation of the total scalar curvature functional. Bull. Korean Math. Soc. 49(3), 655–667 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chang, J., Hwang, S., Yun, G.: Rigidity of the critical point equation. Math. Nachr. 283, 846–853 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chang, J., Hwang, S., Yun, G.: Total scalar curvature and harmonic curvature. Taiwan. J. Math. 18(5), 1439–1458 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Corvino, J., Eichmair, M., Miao, P.: Deformation of scalar curvature and volume. Math. Ann. 357, 551–584 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hizagi, O., Montiel, S., Raulot, S.: Uniqueness of the de Sitter spacetime among static vacua with positive cosmological constant. Ann. Glob. Anal. Geom. 47, 167–178 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hwang, S.: Critical points of the scalar curvature functional on the space of metrics of constant scalar curvature. Manuscr. Math. 103, 135–142 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hwang, S.: The critical point equation on a three-dimensional compact manifold. Proc. Am. Math. Soc. 131, 3221–3230 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hwang, S.: Three dimensional critical point of the total scalar curvature. Bull. Korean Math. Soc. 50(3), 867–871 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lafontaine, J.: Sur la géométrie d’une généralisation de l’équation différentielle d’Obata. J. Math. Pures Appl. 62, 63–72 (1983)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lee, J.-M., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lohkamp, J.: The higher dimensional positive mass theorem I (2016). arXiv:math/0608795v2
  17. 17.
    Lohkamp, J.: The higher dimensional positive mass theorem II (2016). arXiv:1612.07505
  18. 18.
    Miao, P., Tam, L.-F.: On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. Partial Differ. Equ. 36(2), 141–171 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Miao, P., Tam, L.-F.: Einstein and conformally flat critical metrics of the volume functional. Trans. Am. Math. Soc. 363, 2907–2937 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Qing, J.: On the uniqueness of the AdS space-time in higher dimensions. Ann. Henri Poincaré 5, 245–260 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Qing, J., Yuan, W.: A note on static spaces and related problems. J. Geom. Phys. 74, 18–27 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shen, Y.: A note on Fischer–Marsden’s conjecture. Proc. Am. Math. Soc. 125, 901–905 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shi, Y.-G., Tam, L.-F.: Positive mass theorem and boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schoen, R.-M., Yau, S.-T.: On the proof of positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schoen, R.-M., Yau, S.-T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schoen, R.-M., Yau, S.-T.: Positive scalar curvature and minimal hypersurface singularities (2017). arXiv:1704.05490v1
  28. 28.
    Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yuan, W.: Volume comparison with respect to scalar curvature (2016). arXiv:1609.08849
  30. 30.
    Yuan, W.: Brown–York mass and positive scalar curvature I-first eigenvalue problem and its applications (2018). arXiv:1806.07798

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsAnhui University of TechnologyMa’anshanChina
  2. 2.Department of MathematicsSun Yat-sen UniversityGuangzhouChina

Personalised recommendations