Skip to main content
Log in

C-projective symmetries of submanifolds in quaternionic geometry

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The generalized Feix–Kaledin construction shows that c-projective 2n-manifolds with curvature of type (1, 1) are precisely the submanifolds of quaternionic 4n-manifolds which are fixed-point set of a special type of quaternionic circle action. In this paper, we consider this construction in the presence of infinitesimal symmetries of the two geometries. First, we prove that the submaximally symmetric c-projective model with type (1, 1) curvature is a submanifold of a submaximally symmetric quaternionic model and show how this fits into the construction. We give conditions for when the c-projective symmetries extend from the fixed-point set of the circle action to quaternionic symmetries, and we study the quaternionic symmetries of the Calabi and Eguchi–Hanson hyperkähler structures, showing that in some cases all quaternionic symmetries are obtained in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D.V., Marchiafava, S.: Quaternionic structures on a manifold and subordinated structures. Annali di Matematica Pura ed Applicata 171, 205–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biquard, O.: Désingularisation de métriques d’Einstein. I. Invent. Math. 192, 197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bielawski, R.: Complexification and hypercomplexification of manifolds with a linear connection. Int. J. Math. 1(4), 813–824 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borówka, A.: Twistor construction of asymptotically hyperbolic Einstein–Weyl spaces. Differ. Geom. Appl. 35, 224–241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borówka, A., Calderbank, D.: Projective geometry and the quaternionic Feix–Kaledin construction. Trans. Am. Math. Soc. arXiv:1512.07625v2 (to appear)

  6. Calderbank, D.M.J.: Möbius structures and two dimensional Einstein–Weyl geometry. J. Reine Angew. Math. 504, 37–53 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Calderbank, D.M.J., Eastwood, M., Matveev, V. S., Neusser, K.: C-projective geometry, Mem. Amer. Math. Soc. arXiv:1512.04516 (to appear)

  8. Cap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs, Amer. Math. Soc., 154, Providence (2009)

  9. Dancer, A., Swann, A.: HyperKähler metrics of cohomogeneity one. J. Geom. Phys. 21, 218–230 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feix, B.: HyperKähler metrics on cotangent bundles. J. Reine Angew. Math. 532, 33–46 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Feix, B.: Hypercomplex manifolds and hyperholomorphic bundles. Math. Proc. Cambridge Philos. Soc. 133, 443–457 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaledin, D.: Hyperkähler metrics on total spaces of cotangent bundles. In: Kaledin, D., Verbitsky, M. (eds.) Hyperkähler Manifolds, Mathematical Physics Series 12. International Press, Boston (1999)

    Google Scholar 

  13. Kruglikov, B., Matveev, V., The, D.: Submaximally symmetric c-projective structures. Int. J. Mat. 27(3), 1650022–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kruglikov, B., The, D.: The gap phenomenon in parabolic geometries. J. Reine Angew. Math. 723, 153–216 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Kruglikov, B., Winther, H., Zalabova, L.: Submaximally symmetric almost quaternionic structures. Transform. Groups (2017). https://doi.org/10.1007/s00031-017-9453-6

  16. LeBrun, C.R.: Spaces of complex null geodesics in complex-Riemannian geometry. Trans. Amer. Math. Soc. 278, 209–231 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pedersen, H., Poon, Y.S.: Twistorial construction of quaternionic manifolds. In: Proceedings of the Sixth International Colloquium on Differential Geometry, Santiago de Compostela, pp. 207–218 (1988)

  18. Salamon, S.: Differential geometry of quaternionic manifolds. Annales scientifiques de l’É.N.S. 19, 31–55 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Zalabova, L.: Symmetries of parabolic geometries. Differ. Geom. Appl. 27(5), 605–622 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank David Calderbank, Boris Kruglikov and Lenka Zalabova for helpful discussions and comments. This work was partially supported by the Simons Foundation Grant 346300 and the Polish Government MNiSW 2015-2019 matching fund, and by the Grant P201/12/G028 of the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Winther.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borówka, A., Winther, H. C-projective symmetries of submanifolds in quaternionic geometry. Ann Glob Anal Geom 55, 395–416 (2019). https://doi.org/10.1007/s10455-018-9631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9631-3

Keywords

Mathematics Subject Classification

Navigation