Skip to main content
Log in

The adapted hyper-Kähler structure on the crown domain

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let \(\Xi \) be the crown domain associated with a non-compact irreducible Hermitian symmetric space G / K. We give an explicit description of the unique G-invariant adapted hyper-Kähler structure on \(\Xi \), i.e., compatible with the adapted complex structure \(J_\mathrm{ad}\) and with the G-invariant Kähler structure of G / K. We also compute invariant potentials of the involved Kähler metrics and the associated moment maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhiezer, D.N., Gindikin, S.G.: On Stein extensions of real symmetric spaces. Math. Ann. 286, 1–12 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biquard, O., Gauduchon, P.: Geometry and physics, lecture notes in pure and applied mathematics. In: Andersen, J., Dupont, J., Petersen, H., Swann, A. (eds.) Hyperkähler Metrics on Cotangent Bundles of Hermitian Symmetric Spaces, vol. 184, pp. 287–298. Marcel Dekker, New York (1996)

    Google Scholar 

  3. Biquard, O., Gauduchon, P.: La métrique hyperkählérienne des orbites coadjointes de type symétrique d’un groupe de Lie complexe semi-simple. C. R. Acad. Sci. Paris 323(1), 1259–1264 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Burns, D., Halverscheid, S., Hind, R.: The geometry of Grauert tubes and complexification of symmetric spaces. Duke Math. J. 118(3), 465–491 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calabi, E.: Métriques kählériennes et fibrés holomorphes. Ann. Ec. Norm. Sup. Soc. 12, 269–294 (1979)

    Article  MATH  Google Scholar 

  6. Dancer, A.S., Szöke, R.: Symmetric spaces, adapted complex structures and hyper-Kähler structures. Q. J. Math. Oxford (2) 48, 27–38 (1997)

    Article  MATH  Google Scholar 

  7. Feix, B.: Hyperkähler metric on cotangent bundles. J. Reine. Angew. Math. 532, 33–48 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Geatti, L., Iannuzzi, A.: Orbit structure of a distinguished invariant domain in the complexification of a Hermitian symmetric space. Math. Zeit. 278(3–4), 769–793 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge–Ampère equation. J. Differ. Geom. 34(2), 561–570 (1991). (first part)

    Article  MATH  Google Scholar 

  10. Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge–Ampère equation. J. Differ. Geom. 35(3), 627–641 (1992). (second part)

    Article  MATH  Google Scholar 

  11. Heinzner, P., Schwarz, G.W.: Cartan decomposition of the moment map. Math. Ann. 337, 197–232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lempert, L., Szőke, R.: Global solutions of the homogeneous complex Monge–Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290, 689–712 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Szőke, R.: Complex structures on tangent bundles of Riemannian manifolds. Math. Ann. 291, 409–428 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krötz, B., Stanton, R.J.: Holomorphic extension of representations: (II) geometry and harmonic analysis. GAFA 15, 190–245 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. GTM 102. Springer, Berlin (1984)

    Book  Google Scholar 

  17. Wolf, J.A.: Spaces of Constant Curvature, 5th edn. Publish or Perish Inc, Wilmington (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Iannuzzi.

Additional information

Research partially supported by INdAM-GNSAGA.

Appendices

Appendix A: a proof of the uniqueness of the adapted hyper-Kähler structure for \(G=SL_2({\mathbb {R}})\)

Here, we carry out a proof of the uniqueness of the adapted hyper-Kähler structure in the case of \(G=SL_2({\mathbb {R}})\), as announced in Sect. 7.

Consider the map \({\mathfrak {p}}\times {\mathfrak {k}}\times \Omega ^+ \rightarrow \Xi \), given by \((U,C,H) \rightarrow \exp U \exp C \exp iH K^{\mathbb {C}}\), which is an analytic diffeomorphism of a neighborhood of \(\{0\}\times \{0\}\times \Omega ^+\) onto its image \(\Omega ''\) (cf. [15], Cor. 4.2 ). On \(\Omega ''\), we consider the vector fields

where \(A:=[\theta E,\, E]\), \(P=E - \theta E\) and \(K=E + \theta E\,\). In particular, \(I_0A=-P\), \(I_0P=A\,\). Moreover \([A,\,K]=\alpha (A)P=2P\) and \([A,\,P]=\alpha (A)K=2K\) (see (2), (4) and (6)). All above vector fields commute, since they are push-forward of coordinate vector fields on the product \({\mathfrak {p}}\times {\mathfrak {k}}\times \Omega ^+ \).

Proof of uniqueness of the adapted hyper-Kähler structure (for \(G=SL_2({\mathbb {R}})\,\)). Let

$$\begin{aligned} ({{\mathcal {I}}},\,{{\mathcal {J}}},\,{{\mathcal {K}}},\,\omega _{{\mathcal {I}}},\,\omega _{{\mathcal {J}}},\, \omega _{{\mathcal {K}}}) \end{aligned}$$

be an arbitrary G-invariant hyper-Kähler structure with the property that \({{\mathcal {J}}}=J_\mathrm{ad}\) and the restriction of the Kähler structure \(({{\mathcal {I}}},\,\omega _{{\mathcal {I}}})\) to \({\mathfrak {p}}\) coincides with the standard Kähler structure \((I_0,\,\omega _0)\) of G / K. Consider the map \({\overline{L}}:\Omega \rightarrow GL_{\mathbb {R}}({\mathfrak {p}}^{\mathbb {C}})\, \) which describes \({{\mathcal {I}}}\) along the slice by

$$\begin{aligned} {{\mathcal {I}}}a_*Z=a_*{\overline{L}}_H Z, \end{aligned}$$

where \(H\in \Omega \) and \(a= \exp iH\). As observed in the proof of the main Theorem in Sect. 7, we need to show that for every H in \(\Omega \) and \(Z \in {\mathfrak {p}}^{\mathbb {C}}\) one has \({\overline{L}}_H Z=F_aI_0F_a^{-1}{\overline{Z}}\). Note that from Lemma 7.3, it follows that

$$\begin{aligned} \omega _{{\mathcal {J}}}(a_*Z , \, a_*W)=\omega _{{\mathcal {I}}}({{\mathcal {J}}}a_*Z, \, {{\mathcal {I}}}a_*W)\, =-\mathrm{Im}B(I_0Z,\,{\overline{L}}_HW). \end{aligned}$$
(20)

Claim 1

With respect to the basis

$$\begin{aligned} \{A,\,P,\,iA,\,iP \} \end{aligned}$$

of \({\mathfrak {p}}^{\mathbb {C}}\), the anti-linear anti-involution \({\overline{L}}_H\) of \({\mathfrak {p}}\) is represented by a matrix

$$\begin{aligned} \begin{pmatrix} a_1&{}\ a_2&{}b_1&{}\ 0 \\ a_3&{}-a_1&{}0&{}\ b_1\\ b_1&{}0&{}-a_1&{}-a_2\\ 0&{}b_1&{}-a_3&{}a_1 \end{pmatrix}, \end{aligned}$$

where \(a_1\), \(a_2\), \(a_3\) and \(b_1\) are real-analytic functions of H and \( b_1^2+a_1^2+a_2a_3 =-1\).

Proof of the claim

Let

$$\begin{aligned} \begin{pmatrix} A&{}\quad B \\ C&{}\quad D \end{pmatrix}\, \end{aligned}$$

be the representative matrix of \(L_H\) with respect to the above basis, which is compatible with the decomposition \({\mathfrak {p}}\oplus i{\mathfrak {p}}\). Since \({{\mathcal {I}}}{{\mathcal {J}}}=-{{\mathcal {J}}}{{\mathcal {I}}}\,\), it follows that \( {\overline{L}}_H {{\mathcal {J}}}Z=-{{\mathcal {J}}}{\overline{L}}_HZ\), for every Z in \({\mathfrak {p}}\), i.e., \({\overline{L}}_H\) is anti-linear. This implies that \(C=B\) and \(D=-A\), where

$$\begin{aligned} A= \begin{pmatrix} a_1 &{} \quad a_2\\ a_3 &{} \quad a_4 \end{pmatrix}\, \qquad \mathrm{and}\qquad B= \begin{pmatrix} b_1 &{} \quad b_2 \\ b_3&{} \quad b_4 \end{pmatrix}. \end{aligned}$$

Since \(\omega _{{\mathcal {J}}}(\, \cdot \, , \,\, \cdot \,)\) is skew-symmetric, (20) implies that

$$\begin{aligned} \mathrm{Im}B(I_0Z,\,{\overline{L}}_HW)= -\mathrm{Im}B(I_0W,\,{\overline{L}}_HZ)=-\mathrm{Im}B({\overline{L}}_HZ,\,I_0W ), \end{aligned}$$

for every \(Z,\,W \in {\mathfrak {p}}^{\mathbb {C}}\). As \(\ {}^t\! I_0 = -I_0\), one obtains

$$\begin{aligned} -\begin{pmatrix} I_0&{} 0\\ 0&{} I_0 \end{pmatrix} \begin{pmatrix} 0&{}Id \\ Id&{} \ 0 \end{pmatrix} \begin{pmatrix} A&{}B \\ B&{} -A \end{pmatrix}=- \begin{pmatrix} {}^t\! A&{} {}^t B \\ {}^t\! B&{} {-}^t\! A \end{pmatrix} \begin{pmatrix} 0&{}Id \\ Id&{} \ 0 \end{pmatrix} \begin{pmatrix} I_0&{}0\\ 0&{} I_0 \end{pmatrix} , \end{aligned}$$

which implies \(I_0A= {-}^t AI_0\) and \(I_0B= {}^t BI_0\). Thus the matrix realization of \({\overline{L}}_H\) is as claimed and the relation \( b_1^2+a_1^2+a_2a_3 =-1\) follows from the fact that \(({\overline{L}}_H)^2=-Id\). This concludes the proof of the claim.

Then in order to conclude the proof, we need to show that the functions \(a_1\) and \(b_1\) identically vanish and \(a_3(H)= -\cos \alpha (H)\) (recall that \(I_0A=-P\) and \(I_0P=A\)). This will be done by showing that such functions are solutions of a system of differential equations with initial conditions \(a_1(0)=0=b_1(0)\), \(a_3(0)=-1\). Without loss of generality, in the sequel we normalize the Killing form B by setting \(B(A,A)=B(P,P)=1\).

  • \(\ \,{{{\varvec{b}}}}_\mathbf{1}\equiv \mathbf{0}\).

Let \(z=aK^{\mathbb {C}}\in \Xi ''\), with \(a=\exp iH\). Since the vector fields , , commute and \(\omega _{{\mathcal {J}}}\) is closed, Cartan’s classical formula gives

One has

which, by (20), gives

$$\begin{aligned}&\textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\tfrac{d}{ds}{\big |_{s=0}}\exp s(-t\alpha (A)K)aK^{\mathbb {C}},\,a_*iA)\\&\qquad -\textstyle \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)\mathrm{Im}B(I_0A ,\,{\overline{L}}_{H+tA}P)\\&\quad =\textstyle \omega _{{\mathcal {J}}}(a_* \alpha (A) \sin \alpha (H)iP,\,a_*iA)+ \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)b_1(H+tA)\\&\quad = -\, \textstyle \alpha (A) \sin \alpha (H)\mathrm{Im}B(I_0iP,\,{\overline{L}}_HiA)+ \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)b_1(H+tA)\\&\quad = -\, \textstyle \alpha (A) \sin \alpha (H)\mathrm{Im}B(A,\,{\overline{L}}_H A)+ \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)b_1(H+tA)\\&\quad = -\, \textstyle \alpha (A) \sin \alpha (H)b_1(H)+ \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)b_1(H+tA)\\&\quad = -\,2 \textstyle \alpha (A) \sin \alpha (H)b_1(H)+ \cos \alpha (H)\tfrac{d}{dt}{\big |_{t=0}}b_1(H+tA)=0. \end{aligned}$$

Equivalently,

$$\begin{aligned} \tfrac{d}{dt}{\big |_{t=0}}b_1(H+tA)=2 \textstyle \frac{\alpha (A) \sin \alpha (H)}{\cos \alpha (H)}b_1(H). \end{aligned}$$

The solution of this differential equation is \(b_1(H)=ce^{-2 log \cos \alpha (H)}= \frac{c}{\cos ^2 \alpha (H)}\), where c is a real constant. The initial condition \(b_1(0)=0\) forces \(c=0\) and consequently \(b_1 \equiv 0\).

  • \({{{\,{{\varvec{a}}}_\mathbf{1}\equiv \mathbf{0}.}}}\)

In this case, we choose the vector fields , and . One has

The first term on the right-hand side of the equal sign vanishes by the G-invariance of \(\omega _{{\mathcal {J}}}\). Thus, one obtains

$$\begin{aligned}&-\textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\tfrac{d}{ds}{\big |_{s=0}}\exp sA{\exp tKaK^{\mathbb {C}}},\,(\exp tKa)_*iA)\\&\qquad +\textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\exp i(H+tA)_*A ,\,\tfrac{d}{ds}{\big |_{s=0}}\exp s K \exp i(H+tA)K^{\mathbb {C}})\\&\quad = -\textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\tfrac{d}{ds}{\big |_{s=0}}{\exp tK\exp s(A-t[K,\,A] + O(t^2))aK^{\mathbb {C}}},\,(\exp tKa)_*iA)\\&\qquad +\textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\exp i(H+tA)_*A ,\,-\exp i(H+tA)_*\sin \alpha (H+tA)iP)\\&\quad = -\textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(a_*(A+t\alpha (A)F_aP + O(t^2)),\,a_*iA)\\&\qquad +\textstyle \tfrac{d}{dt}{\big |_{t=0}}\sin \alpha (H+tA)\mathrm{Im}B(I_0A ,\,{\overline{L}}_{H+tA}iP)\\&\quad = - \textstyle \omega _{{\mathcal {J}}}(a_*\alpha (A)F_aP,\,a_*iA)+ \tfrac{d}{dt}{\big |_{t=0}}\sin \alpha (H+tA)\mathrm{Re}B(P ,\,{\overline{L}}_{H+tA}P)\\&\quad = \textstyle \alpha (A)\cos \alpha (H) \mathrm{Im}B(I_0P,\,{\overline{L}}_H iA)- \tfrac{d}{dt}{\big |_{t=0}}\sin \alpha (H+tA)a_1(H+tA)\\&\quad = -\textstyle \alpha (A)\cos \alpha (H) \mathrm{Re}B(A,\,{\overline{L}}_H A)- \tfrac{d}{dt}{\big |_{t=0}}\sin \alpha (H+tA)a_1(H+tA) \\&\quad = \textstyle -\alpha (A)\cos \alpha (H) a_1(H)- \tfrac{d}{dt}{\big |_{t=0}}\sin \alpha (H+tA)a_1(H+tA) \\&\quad =\textstyle -2\alpha (A)\cos \alpha (H) a_1(H)- \sin \alpha (H)\tfrac{d}{dt}{\big |_{t=0}}a_1(H+tA) =0. \end{aligned}$$

Equivalently,

$$\begin{aligned} \textstyle \tfrac{d}{dt}{\big |_{t=0}}a_1(H+tA) =-\frac{2\alpha (A)\cos \alpha (H)}{\sin \alpha (H)} a_1(H). \end{aligned}$$

For \(H\not =0\), the solution of this differential equation is \(a_1(H)=ce^{-2log \sin \alpha (H)}= \frac{c}{\sin ^2 \alpha (H)}\) and, due to the initial condition \(a_1(0)=0\), one has \(\lim _{H\rightarrow 0}a_1(H)=0\). Hence, \(c=0\) and \(a_1 \equiv 0\).

  • \(\ \,{{\varvec{a}}}_\mathbf{3}({{\varvec{H}}})= -{\varvec{\cos }} {\varvec{\alpha }}({{\varvec{H}}})\).

For this, choose the vector fields , and . One has

where the first term on the right-hand side of the equal sign vanishes by the G-invariance of \(\omega _{{\mathcal {J}}}\). Thus, one obtains

$$\begin{aligned}&\textstyle -\tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\tfrac{d}{ds}{\big |_{s=0}}\exp sP \exp tK aK^{\mathbb {C}},\,\tfrac{d}{ds}{\big |_{s=0}}\exp tK \exp i(H+sA)K^{\mathbb {C}})\\&\qquad + \textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\tfrac{d}{ds}{\big |_{s=0}}\exp s P \exp i(H+tA)K^{\mathbb {C}},\,\tfrac{d}{ds}{\big |_{s=0}}\exp s K \exp i(H+tA)K^{\mathbb {C}}) \\&\quad = -\textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\tfrac{d}{ds}{\big |_{s=0}}{\exp tK\exp s(P-t[K,P] + O(t^2))aK^{\mathbb {C}}},\,(\exp tKa)_*iA)\\&\qquad + \textstyle \tfrac{d}{dt}{\big |_{t=0}}\omega _{{\mathcal {J}}}(\exp i(H+tA)_*\cos \alpha (H+tA)P ,\, -\exp i(H+tA)_*\sin \alpha (H+tA)iP)\\&\quad =\text {(recall that [K,P]=2A)}\\&\quad =\textstyle \omega _{{\mathcal {J}}}(2a_*A,\,a_*iA) \textstyle - \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)\sin \alpha (H+tA)\omega _{{\mathcal {J}}}(\exp i(H+tA)_*P ,\\&\qquad \, \exp i(H+tA)_*iP) \\&\quad = \textstyle -2\mathrm{Im}B(I_0A, {\overline{L}}_H iA)+ \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)\sin \alpha (H+tA)\mathrm{Im}B(I_0P ,\, {\overline{L}}_{H+tA}iP)\\&\quad = \textstyle -2\mathrm{Re}B(P, {\overline{L}}_H A)- \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)\sin \alpha (H+tA)\mathrm{Re}B(A ,\, {\overline{L}}_{H+tA}P)\\&\quad = -\textstyle 2a_3(H)- \tfrac{d}{dt}{\big |_{t=0}}\cos \alpha (H+tA)\sin \alpha (H+tA)a_2(H+tA) \\&\quad = -\textstyle 2a_3(H)+ \tfrac{d}{dt}{\big |_{t=0}}\frac{\cos \alpha (H+tA)}{a_3(H+tA)}\sin \alpha (H+tA) =0. \end{aligned}$$

For the last equality, we use that, since \(a_1=b_1 \equiv 0\), one has \(a_2=-\frac{1}{a_3}\) (see claim). Due to the initial condition \(a_3(0)= -1\) and the fact that \(\alpha (A)=2\), it follows that \(a_3(H)=- \cos \alpha (H)\). This concludes the proof. \(\square \)

Appendix B: the canonical Kähler form and its potential

Define \(\rho _\mathrm{can}:\Xi \rightarrow {\mathbb {R}}\) by

$$\begin{aligned} \,\textstyle \rho _\mathrm{can}(gaK^{\mathbb {C}}):= \textstyle \frac{1}{2}B(H,H), \end{aligned}$$

for \(gaK^{\mathbb {C}}\in \Xi \) with \(a= \exp iH\), and set \(\omega _\mathrm{can}=-dd_J^c \rho _\mathrm{can}\), where \(J=J_\mathrm{ad}\). As mentioned in the introduction, \(\Xi \) can be thought as a G-invariant domain in the cotangent bundle \(T^*(G/K)\). In this realization, from the results in [9, 10] and [13] (see also [14]), it follows that \(\omega _\mathrm{can}\) coincides with the canonical real symplectic form on \(T^*(G/K)\).

An analogous computation as in Proposition 6.2 gives the following Lie group theoretic realization of \(\omega _\mathrm{can}\) and of the associated moment map on \(\Xi \subset G^{\mathbb {C}}/K^{\mathbb {C}}\).

Proposition 10.1

The function \(\rho _\mathrm{can}\) is a G-invariant potential of the canonical symplectic form \(\omega _\mathrm{can}\). At points \(aK^{\mathbb {C}}\) on the slice one has

$$\begin{aligned} \,\omega _\mathrm{can}({{\widetilde{Z}}}_{aK^{\mathbb {C}}},\,{{\widetilde{W}}}_{aK^{\mathbb {C}}}):= -\mathrm{Im}B\big (Z,\, E_a^{-1}F_a{\overline{W}} \big ), \end{aligned}$$

for \(Z,\,W \in {\mathfrak {p}}^{\mathbb {C}}\). Equivalently,

$$\begin{aligned} \,\omega _\mathrm{can}(a_*Z,\,a_*W)= -\mathrm{Im}B\big (F_a^{-1}Z,\, E_a^{-1}{\overline{W}} \big ). \end{aligned}$$

The moment map \(\mu _\mathrm{can}:\Xi \rightarrow {\mathfrak {g}}^*\) associated with \(\rho _\mathrm{can}\) is given by

$$\begin{aligned} \,\mu _\mathrm{can}(gaK^{\mathbb {C}})(X) =B \big (\mathrm{Ad}_{g^{-1}} X ,\,H \big ). \end{aligned}$$

Remark 10.2

By means of Lemma 5.2(i) and Proposition 10.1, one can check that the form \(\omega _J\) is the pull-back of \(\omega _\mathrm{can}\) via the G-equivariant map \(\psi \) defined in Sect. 4. (cf. Rem. 4.5 and [6], Thm. 4.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geatti, L., Iannuzzi, A. The adapted hyper-Kähler structure on the crown domain. Ann Glob Anal Geom 55, 17–41 (2019). https://doi.org/10.1007/s10455-018-9616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9616-2

Keywords

Mathematics Subject Classification

Navigation