Skip to main content
Log in

A boundary monotonicity inequality for variationally biharmonic maps and applications to regularity theory

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We derive a boundary monotonicity formula for a class of biharmonic maps with Dirichlet boundary conditions. A monotonicity formula is crucial in the theory of partial regularity in supercritical dimensions. As a consequence of such a boundary monotonicity formula, one is able to show partial regularity for variationally biharmonic maps and full boundary regularity for minimizing biharmonic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. One distinguishes between extrinsically and intrinsically biharmonic maps. We say that a map is intrinsically biharmonic iff it is a critical point of \(\mathcal {E}(u)=\int _{\mathcal {M}}\vert \nabla Du\vert ^2\text {d}\mu _{\mathcal {M}}\). The energy \(\mathcal {E}\) does not depend on the embedding \(\mathcal {N}\hookrightarrow \mathbb {R}^n\) while \(E_2\) does. Therefore, the distinction between extrinsically and intrinsically biharmonic maps.

References

  1. Altuntas, S.: Derivation of a boundary monotonicity inequality for variationally biharmonic maps (download under https://arxiv.org/pdf/1711.03348.pdf) (2017)

  2. Angelsberg, G.: A monotonicity formula for stationary biharmonic maps. Math. Z. 252, 287–293 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bethuel, F.: On the singular set of stationary harmonic maps. Manuscr. Math. 78, 417–443 (1993)

    Article  MathSciNet  Google Scholar 

  4. Chang, S.-Y.A., Wang, L., Yang, P.: A regularity theory for biharmonic maps. Comm. Pure Appl. Math. 52, 1113–1137 (1999)

    Article  MathSciNet  Google Scholar 

  5. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Rational Mech. Anal. 116, 101–113 (1991)

    Article  MathSciNet  Google Scholar 

  6. Gong, H., Lamm, T., Wang, C.: Boundary regularity of stationary biharmonic maps. Calc. Var. 45, 165–191 (2012)

    Article  Google Scholar 

  7. Große-Brauckmann, K.: Interior and boundary monotonicity formulas for stationary harmonic maps. Manuscr. Math. 77, 89–95 (1992)

    Article  MathSciNet  Google Scholar 

  8. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math. 312(8), 591–596 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Hong, M.-C., Wang, C.: Regularity and relaxed problems of minimizing biharmonic maps into spheres. Calc. Var. Partial Differ. Equ. 23(4), 425–450 (2005)

    Article  MathSciNet  Google Scholar 

  10. Mazowiecka, K.E.: Singularities of harmonic and biharmonic maps into compact manifolds, PhD Dissertation (2017)

  11. Morrey Jr., C.B.: The problem of Plateau on a Riemannian manifold. Ann. Math. 49, 807–951 (1948)

    Article  MathSciNet  Google Scholar 

  12. Moser, R.: A variational problem pertaining to biharmonic maps. Commun. Partial Differ. Equ. 33(9), 1654–1689 (2008). https://doi.org/10.1080/03605300802224698

    Article  MathSciNet  Google Scholar 

  13. Moser, R.: Partial Regularity for Harmonic Maps and Related Problems. World Scientific Publishing, Hackensack, NJ (2005)

    Book  Google Scholar 

  14. Nirenberg, L.: On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13(2), 115–162 (1959). Série 3

    MathSciNet  MATH  Google Scholar 

  15. Scheven, C.: Dimension reduction for the singular set of biharmonic maps. Adv. Calc. Var 1, 53–91 (2008)

    Article  MathSciNet  Google Scholar 

  16. Scheven, C.: Variationally harmonic maps with general boundary conditions: boundary regularity. Calc. Var 25(4), 409–429 (2006)

    Article  MathSciNet  Google Scholar 

  17. Schoen, R., Uhlenbeck, K.: A regularity theory of harmonic maps. J. Differ. Geom. 17, 307–335 (1982)

    Article  MathSciNet  Google Scholar 

  18. Schoen, R., Uhlenbeck, K.: Boundary regularity and the dirichlet problem for harmonic maps. J. Differ. Geom. 18, 253–268 (1983)

    Article  MathSciNet  Google Scholar 

  19. Simon, L.: Theorems on regularity and singularity of energy minimizing maps. ETH Lecture Notes, Birkhäuser, Zürich (1996)

    Book  Google Scholar 

  20. Rivière, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175, 197–226 (1995)

    Article  MathSciNet  Google Scholar 

  21. Wang, C.: Stationary biharmonic maps from \(\mathbb{R}^{m}\) into a Riemannian manifold. Math. Z. 247(1), 65–87 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Dr. Christoph Scheven for his much helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Altuntas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntas, S. A boundary monotonicity inequality for variationally biharmonic maps and applications to regularity theory. Ann Glob Anal Geom 54, 489–508 (2018). https://doi.org/10.1007/s10455-018-9610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9610-8

Keywords

Navigation