Advertisement

Annals of Global Analysis and Geometry

, Volume 53, Issue 4, pp 521–541 | Cite as

Invariant singular minimal surfaces

  • Rafael López
Article

Abstract

We classify all singular minimal surfaces in Euclidean space that are invariant by a uniparametric group of translations and rotations.

Keywords

Singular minimal surface Cylindrical surface Rotational surface 

Mathematics Subject Classification

53A10 53C44 

Notes

Acknowledgements

Part of this paper was done by the author in 2016 during a stay in the Department of Mathematics of the RWTH Aachen University. The author thanks specially to Prof. Josef Bemelmans for his valuable discussions and hospitality. The author also thanks to Prof. Omari (Trieste) to pay me the attention in the articles and techniques for radial solutions of a prescribed mean curvature-type equation.

References

  1. 1.
    Bemelmans, J., Dierkes, U.: On a singular variational integral with linea growth, I: existence and regularity of minimizers. Arch. Ration. Mech. Anal. 100, 83–103 (1987)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces. Proc. Am. Math. Soc. 137, 171–178 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Böhme, R., Hildebrandt, S., Taush, E.: The two-dimensional analogue of the catenary. Pac. J. Math. 88, 247–278 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Corsato, C., De Coster, C., Omari, P.: Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Discret. Contin. Dyn. Syst. 2015, 297–303 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dierkes, U.: A geometric maximum principle, Plateau’s problem for surfaces of prescribed mean curvature, and the two-dimensional analogue of the catenary. In: Partial Differential Equations and Calculus of Variations, Springer Lecture Notes in Mathematics, vol. 1357, pp. 116–141 (1988)Google Scholar
  6. 6.
    Dierkes, U.: A Bernstein result for energy minimizing hypersurfaces. Calc. Var. Partial Differ. Equ. 1(1), 37–54 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dierkes, U.: Singular Minimal Surfaces. Geometric Analysis and Nonlinear Partial Differential Equations, pp. 177–193. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dierkes, U., Huisken, G.: The \(n\)-dimensional analogue of the catenary: existence and nonexistence. Pac. J. Math. 141, 47–54 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Func. Anal 13, 178–215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Keiper, J.B.: The axially symmetric \(n\)-tectum. Toledo University, Preprint (1980)Google Scholar
  11. 11.
    López, R.: Separation of variables in equation of mean curvature type. Proc. R. Soc. Edinb. Sect. A Math. 146(5), 1017–1035 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    López, R.: Compact singular minimal surfaces with boundary. Preprint (2017)Google Scholar
  13. 13.
    Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52, 853–858 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Nitsche, J.C.C.: A non-existence theorem for the two-dimensional analogue of the catenary. Analysis 6, 143–156 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. Chapman & Hall/CRC, Boca Raton (2003)zbMATHGoogle Scholar
  16. 16.
    Riemann, B.: Über die Fläche vom kleinsten Inhalt bei gegebener Begrenzung. Abh. Königl, d. Wiss. Göttingen, Mathem. Cl. 13, 3–52 (1867). Hattendorf , K. (ed.) JFM 01.0218.01Google Scholar
  17. 17.
    Winklmann, S.: Maximum principles for energy stationary hypersurfaces. Analysis 26, 251–258 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Geometría y Topología, Instituto de Matemáticas (IEMath-GR)Universidad de GranadaGranadaSpain

Personalised recommendations