Skip to main content
Log in

The Ricci tensor of almost parahermitian manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the pseudoriemannian geometry of almost parahermitian manifolds, obtaining a formula for the Ricci tensor of the Levi–Civita connection. The formula uses the intrinsic torsion of an underlying \(\mathrm {SL}(n,\mathbb {R})\)-structure; we express it in terms of exterior derivatives of some appropriately defined differential forms. As an application, we construct Einstein and Ricci-flat examples on Lie groups. We disprove the parakähler version of the Goldberg conjecture and obtain the first compact examples of a non-flat, Ricci-flat nearly parakähler structure. We study the paracomplex analogue of the first Chern class in complex geometry, which obstructs the existence of Ricci-flat parakähler metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D.V., Kimel’fel’d, B.N.: Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funkcional. Anal. i PriloŽen. 9(2), 5–11 (1975)

    MathSciNet  Google Scholar 

  2. Alekseevsky, D.V., Medori, C., Tomassini, A.: Homogeneous para-Kählerian Einstein manifolds. Uspekhi Mat. Nauk 64(1(385)), 3–50 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angella, D., Rossi, F.A.: Cohomology of \({\bf D}\)-complex manifolds. Differ. Geom. Appl 30(5), 530–547 (2012). https://doi.org/10.1016/j.difgeo.2012.07.003

    Article  MATH  Google Scholar 

  4. Aubin, T.: Équations du type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102(1), 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Bedulli, L., Vezzoni, L.: The Ricci tensor of SU(3)-manifolds. J. Geom. Phys 57(4), 1125–1146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. 126, 525–576 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bryant, R.L.: Some remarks on \(G_2\)-structures. In: Proceedings of Gökova Geometry-Topology Conference 2005. Gökova Geometry/Topology Conference (GGT), pp. 75–109. Gökova (2006)

  8. Chiossi, S., Salamon, S.: The intrinsic torsion of \(SU(3)\) and \(G_2\) structures. In: Differential Geometry, Valencia 2001, pp. 115–133. World Scientific (2002)

  9. Chursin, M., Schäfer, L., Smoczyk, K.: Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds. Calc. Var. Partial Differ. Equ. 41(1–2), 111–125 (2011). https://doi.org/10.1007/s00526-010-0355-x

    Article  MATH  Google Scholar 

  10. Conti, D.: Intrinsic torsion in quaternionic contact geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. 16(2), 625–674 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Cortés, V., Leistner, T., Schäfer, L., Schulte-Hengesbach, F.: Half-flat structures and special holonomy. Proc. Lond. Math. Soc. 102(1), 113–158 (2011). https://doi.org/10.1112/plms/pdq012

    Article  MathSciNet  MATH  Google Scholar 

  12. Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry. I. Vector multiplets. J. High Energy Phys. 3, 028. (electronic) (2004). https://doi.org/10.1088/1126-6708/2004/03/028

  13. Cortés, V., Schäfer, L.: Geometric structures on Lie groups with flat bi-invariant metric. J. Lie Theory 19(2), 423–437 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mountain J. Math. 26(1), 83–115 (1996). https://doi.org/10.1216/rmjm/1181072105

    Article  MathSciNet  MATH  Google Scholar 

  15. Etayo, F., Santamaría, R., Trías, U.R.: The geometry of a bi-Lagrangian manifold. Differ. Geom. Appl. 24(1), 33–59 (2006). https://doi.org/10.1016/j.difgeo.2005.07.002

    Article  MathSciNet  MATH  Google Scholar 

  16. Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-0979-9

    Google Scholar 

  17. Gadea, P.M., Masque, J.M.: Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. 11(2), 377–396 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Gong, M.P.: Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R). ProQuest LLC, Ann Arbor, MI (1998). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:NQ30613. Thesis (Ph.D.)–University of Waterloo (Canada)

  19. Gray, A., Hervella, L.: The sixteen classes of almost Hermitian manifolds. Ann. Mat. Pura e Appl. 282, 1–21 (1980)

    MATH  Google Scholar 

  20. Harvey, F.R., Lawson, J.H.B.: Split special Lagrangian geometry. In: Metric and differential geometry, Progr. Math., vol. 297, pp. 43–89. Birkhäuser/Springer, Basel (2012). https://doi.org/10.1007/978-3-0348-0257-4_3

  21. Ivanov, S., Zamkovoy, S.: Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23(2), 205–234 (2005). https://doi.org/10.1016/j.difgeo.2005.06.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, Y.H., McCann, R.J., Warren, M.: Pseudo-Riemannian geometry calibrates optimal transportation. Math. Res. Lett. 17(6), 1183–1197 (2010). https://doi.org/10.4310/MRL.2010.v17.n6.a16

    Article  MathSciNet  MATH  Google Scholar 

  23. Libermann, P.: Sur les variétés presque paracomplexes. In: Colloque de topologie et géométrie différentielle, Strasbourg, 1952, no. 5, p. 10. La Bibliothèque Nationale et Universitaire de Strasbourg (1953)

  24. Martín Cabrera, F., Swann, A.: Curvature of almost quaternion-Hermitian manifolds. Forum Math. 22(1), 21–52 (2010). https://doi.org/10.1515/FORUM.2010.002

    MathSciNet  MATH  Google Scholar 

  25. Matsushita, Y.: Counterexamples of compact type to the Goldberg conjecture and various version of the conjecture. In: Topics in contemporary differential geometry, complex analysis and mathematical physics, pp. 222–233. World Sci. Publ., Hackensack (2007). https://doi.org/10.1142/9789812709806_0024

  26. Rossi, F.A.: D-complex structures: cohomological properties and deformations. Ph.D. thesis, Università degli Studi di Milano–Bicocca (2013). http://hdl.handle.net/10281/41976

  27. Schäfer, L.: Conical Ricci-flat nearly para-Kähler manifolds. Ann. Global Anal. Geom. 45(1), 11–24 (2014). https://doi.org/10.1007/s10455-013-9385-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Schäfer, L., Schulte-Hengesbach, F.: Nearly pseudo-Kähler and nearly para-Kähler six-manifolds. In: Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys., vol. 16, pp. 425–453. Eur. Math. Soc., Zürich (2010). https://doi.org/10.4171/079-1/12

  29. Sekigawa, K.: On some compact Einstein almost Kähler manifolds. J. Math. Soc. Jpn 39(4), 677–684 (1987). https://doi.org/10.2969/jmsj/03940677

    Article  MATH  Google Scholar 

  30. Steenrod, N.: The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton, NJ (1951). Reprinted in Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ (1999)

  31. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31(3), 339–411 (1978). https://doi.org/10.1002/cpa.3160310304

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico A. Rossi.

Additional information

This work was partially supported by FIRB 2012 “Geometria differenziale e teoria geometrica delle funzioni” and GNSAGA of INdAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, D., Rossi, F.A. The Ricci tensor of almost parahermitian manifolds. Ann Glob Anal Geom 53, 467–501 (2018). https://doi.org/10.1007/s10455-017-9584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9584-y

Keywords

Mathematics Subject Classification

Navigation