Annals of Global Analysis and Geometry

, Volume 53, Issue 3, pp 445–466 | Cite as

Twisted smooth Deligne cohomology

  • Daniel Grady
  • Hisham Sati


Deligne cohomology can be viewed as a differential refinement of integral cohomology, hence captures both topological and geometric information. On the other hand, it can be viewed as the simplest nontrivial version of a differential cohomology theory. While more involved differential cohomology theories have been explicitly twisted, the same has not been done to Deligne cohomology, although existence is known at a general abstract level. We work out what it means to twist Deligne cohomology, by taking degree one twists of both integral cohomology and de Rham cohomology. We present the main properties of the new theory and illustrate its use with examples and applications. Given how versatile Deligne cohomology has proven to be, we believe that this explicit and utilizable treatment of its twisted version will be useful.


Deligne cohomology Differential cohomology Twisted cohomology Local coefficient systems Connections Čech-de Rham complex Smooth stacks 



The authors would like to thank the organizers and participants of the Geometric Analysis and Topology Seminar at the Courant Institute for Mathematical Sciences for asking about twisting Deligne cohomology, during a talk by H.S., which encouraged the authors to revisit and carry out this project. D.G. would like to thank the Mathematics Department at the University of Pittsburgh for hospitality during the final writing of this paper. The authors thank Richard Hain for bringing to their attention related works in algebraic geometry and the referee for useful remarks.


  1. 1.
    Adolphson, A., Sperber, S.: On twisted de Rham cohomology. Nagoya Math. J. 146, 55–81 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ando, M., Blumberg, A.J., Gepner, D.J.: Twists of K-theory and TMF, superstrings, geometry, topology, and \(C^\ast \)-algebras. In: Proceedings of Symposia in Pure Mathematics, vol. 81, pp. 27–63. American Mathematical Society, Providence, RI (2010). [arXiv:1002.3004] [math.AT]
  3. 3.
    Ando, M., Blumberg, A.J., Gepner, D., Hopkins, M.J., Rezk, C.: Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory. J. Topol. 7(4), 1077–1117 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aomoto, K., Kita, M., Orlik, P., Terao, H.: Twisted de Rham cohomology groups of logarithmic forms. Adv. Math. 128(1), 119–152 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bär, C., Becker, C.: Differential Characters. Lecture Notes in Mathematics, vol. 2112. Springer, Cham (2014)zbMATHGoogle Scholar
  6. 6.
    Beilinson, A.: Higher regulators and values of L-functions. J. Sov. Math. 30, 2036–2070 (1985)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  8. 8.
    Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Progress in Mathematics, vol. 107. Birkhäuser, Boston (1993)Google Scholar
  9. 9.
    Bunke, U.: Differential cohomology. [arXiv:1208.3961] [math.AT]
  10. 10.
    Bunke, U., Kreck, M., Schick, T.: A geometric description of differential cohomology. Ann. Math. Blaise Pascal 17(1), 1–16 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bunke, U., Nikolaus, T.: Twisted differential cohomology. arXiv:1406.3231
  12. 12.
    Bunke, U., Nikolaus, T., Völkl, M.: Differential cohomology theories as sheaves of spectra. J. Homotopy Relat. Struct. 11(1), 1–66 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bunke, U., Schick, T.: Uniqueness of smooth extensions of generalized cohomology theories. J. Topol. 3, 110–156 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carlson, J., Hain, R.: Extensions of variations of mixed Hodge structure. Astérisque 179–180(9), 39–65 (1989)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cheeger, J., Simons, J.: Differential Characters and Geometric Invariants. Lecture Notes in Mathematics, vol. 1167, pp. 50–80. Springer, Berlin (1985)zbMATHGoogle Scholar
  16. 16.
    Deligne, P.: Equations defférentielles a points singuliers réguliers. Lecture Notes in Mathematics. Springer, Berlin (1970)CrossRefzbMATHGoogle Scholar
  17. 17.
    Deligne, P.: Théorie de Hodge : II. Publ. Math. IHES 40, 5–57 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Deligne, P., Mostow, G.D.: Monodromy of hypergeometric functions and non-lattice integral monodromy groups. Publ. Math. IHES 63, 5–90 (1986)CrossRefzbMATHGoogle Scholar
  19. 19.
    Dugger, D.: Sheaves and homotopy theory, 1999 draft.
  20. 20.
    Dugger, D., Hollander, S., Isaksen, D.: Hypercovers and simplicial presheaves. Math. Proc. Camb. Philos. Soc. 136(1), 9–51 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dupont, J.L., Ljungmann, R.: Integration of simplicial forms and Deligne cohomology. Math. Scand. 97(1), 11–39 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Esnault, H., Viehweg, E.: Deligne–Beilinson cohomology, Beilinson’s conjectures on special values of L-functions. In: Rapoport, M., Schappacher, N., Schneider, P. (eds.) Perspectives in Mathematics, pp. 43–91. Academic Press, Boston (1988)Google Scholar
  23. 23.
    Farber, M.: Topology of Closed One-forms. American Mathematical Society, Providence (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Fiorenza, D., Sati, H., Schreiber, U.: Extended higher cup-product Chern–Simons theory. J. Geom. Phys. 74, 130–163 (2013). [arXiv:1207.5449] [hep-th]
  25. 25.
    Fiorenza, D., Sati, H., Schreiber, U.: A Higher stacky perspective on Chern–Simons theory. In: Calaque, D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories. Springer, Berlin (2015). [arXiv:1301.2580] [hep-th]
  26. 26.
    Fiorenza, D., Sati, H., Schreiber, U.: The \(E_8\) moduli 3-stack of the C-field in M-theory. Commun. Math. Phys. 333, 117–151 (2015). [arXiv:1202.2455] [hep-th]
  27. 27.
    Fiorenza, D., Schreiber, U., Stasheff, J.: Čech cocycles for differential characteristic classes—an infinity-Lie theoretic construction. Adv. Theor. Math. Phys. 16, 149–250 (2012). [arXiv:1011.4735] [math.AT]
  28. 28.
    Freed, D.S.: The Verlinde algebra is twisted equivariant K-theory. Turk. J. Math. 25, 159–167 (2001)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Gajer, P.: Geometry of Deligne cohomology. Invent. Math. 127, 155–207 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gawedzki, K., Suszek, R.R., Waldorf, K.: Bundle gerbes for orientifold sigma models. Adv. Theor. Math. Phys. 15, 621–688 (2011). [arXiv:0809.5125] [math-ph]
  31. 31.
    Gillet, H.: Deligne homology and Abel–Jacobi maps. Bull. Am. Math. Soc. 10, 285–288 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gomi, K.: Equivariant smooth Deligne cohomology. Osaka J. Math. 42(2), 309–337 (2005)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Grady, D., Sati, H.: Massey products in differential cohomology via stacks. J. Homotopy Relat. Struct. (2017). [arXiv:1510.06366] [math.AT]
  34. 34.
    Grady, D., Sati, H.: Primary operations in differential cohomology. [arXiv:1604.05988] [math.AT]
  35. 35.
    Grady, D., Sati, H.: Spectral sequences in smooth generalized cohomology. Algebr. Geom. Topol. 17(4), 2357–2412 (2017). [arXiv:1605.03444] [math.AT]
  36. 36.
    Hain, R.: Deligne–Beilinson cohomology of affine groups. [arXiv:1507.03144] [math.AG]
  37. 37.
    Harvey, R., Zweck, J.: Steifel–Whitney currents. J. Geom. Anal. 8, 809–844 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hekmati, P., Murray, M.K., Szabo, R.J., Vozzo, R.F.: Real bundle gerbes, orientifolds and twisted KR-homology. [arXiv:1608.06466] [hep-th]
  39. 39.
    Hopkins, M.J., Quick, G.: Hodge filtered complex bordism. J. Topol. 8, 147–183 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and M-theory. J. Differ. Geom. 70(3), 329–452 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Jannsen, U.: Deligne Homology, Hodge-D-Conjecture, and Motives. Beilinson’s Conjectures on Special Values of L-Functions, Perspectives in Mathematics, vol. 4, pp. 305–372. Academic Press, Boston (1988)zbMATHGoogle Scholar
  42. 42.
    Jardine, J.F.: Local Homotopy Theory. Springer, New York (2015)CrossRefzbMATHGoogle Scholar
  43. 43.
    Kapranov, M.: Real mixed Hodge structures. J. Noncommut. Geom. 6, 321–342 (2012). [arXiv:0802.0215] [math.AG]
  44. 44.
    Kita, M.: On hypergeometric functions in several variables II. The Wronskian of the hypergeometric functions. J. Math. Soc. Jpn. 45, 645–669 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Kita, M.: On vanishing of the twisted rational de Rham cohomology associated with hypergeometric functions. Nagoya Math. J. 135, 55–85 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Lind, J.A., Sati, H., Westerland, C.: Twisted iterated algebraic K-theory and topological T-duality for sphere bundles. [arXiv:1601.06285] [math.AT]
  47. 47.
    Lurie, J.: Higher algebra, prepublication book draft. (2011)
  48. 48.
    May, J.P.: \(E_\infty \) ring spaces and \(E_\infty \) ring spectra, with contributions by Quinn, F., Ray, N., Tornehave, J. Lecture Notes in Mathematics 577. Springer, Berlin (1977)Google Scholar
  49. 49.
    May, J.P., Sigurdsson, J.: Parametrized Homotopy Theory. American Mathematical Society, Providence (2006)CrossRefzbMATHGoogle Scholar
  50. 50.
    Nikolaus, T., Schreiber, U., Stevenson, D.: Principal \(\infty \)-bundles: general theory. J. Homotopy Relat. Struct. 10(4), 749–801 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Sati, H., Westerland, C., Twisted Morava K-theory and E-theory. J. Topol. 8(4), 887–916 (2015). [arXiv:1109.3867] [math.AT]
  52. 52.
    Schreiber, U.: Differential cohomology in a cohesive infinity-topos. [arXiv:1310.7930] [math-ph]
  53. 53.
    Schreiber, U., Schweigert, C., Waldorf, K.: Unoriented WZW models and holonomy of bundle gerbes. Commun. Math. Phys. 274, 31–64 (2007). [arXiv:hep-th/0512283]
  54. 54.
    Shipley, B.: \(H{\mathbb{Z}}\)-algebra spectra are differential graded algebras. Am. J. Math. 129(2), 351–379 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Simons, J., Sullivan, D.: Axiomatic characterization of ordinary differential cohomology. J. Topol. 1(1), 45–56 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17(4), 661–692 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Division of Science and MathematicsNew York University NYUADSaadiyat IslandUAE

Personalised recommendations