Left-symmetric algebras and homogeneous improper affine spheres
- 49 Downloads
Abstract
The nonzero level sets in n-dimensional flat affine space of a translationally homogeneous function are improper affine spheres if and only if the Hessian determinant of the function is equal to a nonzero constant multiple of the nth power of the function. The exponentials of the characteristic polynomials of certain left-symmetric algebras yield examples of such functions whose level sets are analogues of the generalized Cayley hypersurface of Eastwood–Ezhov. There are found purely algebraic conditions sufficient for the characteristic polynomial of the left-symmetric algebra to have the desired properties. Precisely, it suffices that the algebra has triangularizable left multiplication operators and the trace of the right multiplication is a Koszul form for which right multiplication by the dual idempotent is projection along its kernel, which equals the derived Lie subalgebra of the left-symmetric algebra.
Keywords
Left-symmetric algebra Affine spheres Cayley hypersurfaceReferences
- 1.Auslander, L.: Simply transitive groups of affine motions. Am. J. Math. 99(4), 809–826 (1977)MathSciNetCrossRefMATHGoogle Scholar
- 2.Benoist, Y.: Une nilvariété non affine. J. Differ. Geom. 41(1), 21–52 (1995)CrossRefMATHGoogle Scholar
- 3.Burde, D.: Étale Affine Representations of the Lie Groups, Geometry and Representation Theory of Real and \(p\)-Adic Groups (Cordoba, 1995), Progr. Math., vol. 158, pp. 35–44. Birkhäuser Boston, Boston (1998)CrossRefGoogle Scholar
- 4.Choi, Y.: Nondegenerate affine homogeneous domain over a graph. J. Korean Math. Soc. 43(6), 1301–1324 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 5.Choi, Y., Chang, K.: Hessian geometry of the homogeneous graph domain. Commun. Korean Math. Soc. 22(3), 419–428 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 6.Choi, Y., Kim, H.: A characterization of Cayley hypersurface and Eastwood and Ezhov conjecture. Int. J. Math. 16(8), 841–862 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 7.Eastwood, M., Ezhov, V.: Cayley hypersurfaces. Tr. Mat. Inst. Steklova 253, 241–244 (2006). (Kompleks. Anal. i Prilozh.)MathSciNetMATHGoogle Scholar
- 8.Elduque, A., Myung, H.C.: On Transitive Left-Symmetric Algebras, Non-Associative Algebra and its Applications (Oviedo, 1993), Math. Appl., vol. 303, pp. 114–121. Kluwer Academic Publishers, Dordrecht (1994)CrossRefGoogle Scholar
- 9.Etherington, I.M.H.: Special train algebras. Q. J. Math. Oxf. Ser. 12, 1–8 (1941)MathSciNetCrossRefMATHGoogle Scholar
- 10.fedja (http://mathoverflow.net/users/1131/fedja). Zeros of gradient of positive polynomials. MathOverflow, http://mathoverflow.net/q/38634 (version: 2010-09-14)
- 11.Fox, D.J.F.: Functions dividing their Hessian determinants and affine spheres. Asian J. Math. 20(3), 503–530 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 12.Goldman, W.M., Hirsch, M.W.: Affine manifolds and orbits of algebraic groups. Trans. Am. Math. Soc. 295(1), 175–198 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 13.Helmstetter, J.: Radical d’une algèbre symétrique à gauche. Ann. Inst. Fourier (Grenoble) 29(4), 17–35 (1979)MathSciNetCrossRefMATHGoogle Scholar
- 14.Jacobson, N.: Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, vol. 10. Interscience Publishers, New York (1962)Google Scholar
- 15.Kang, Y.-F., Bai, C.-M.: Refinement of Ado’s theorem in low dimensions and application in affine geometry. Commun. Algebra 36(1), 82–93 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 16.Kim, H.: Complete left-invariant affine structures on nilpotent Lie groups. J. Differ. Geom. 24(3), 373–394 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 17.Kim, H.: The geometry of left-symmetric algebra. J. Korean Math. Soc. 33(4), 1047–1067 (1996)MathSciNetMATHGoogle Scholar
- 18.Kim, H.: Developing maps of affinely flat Lie groups. Bull. Korean Math. Soc. 34(4), 509–518 (1997)MathSciNetMATHGoogle Scholar
- 19.Mizuhara, A.: On left symmetric algebras with a principal idempotent. Math. Jpn. 49(1), 39–50 (1999)MathSciNetMATHGoogle Scholar
- 20.Mizuhara, A.: On simple left symmetric algebras over a solvable Lie algebra. Sci. Math. Jpn. 57(2), 325–337 (2003)MathSciNetMATHGoogle Scholar
- 21.Segal, D.: The structure of complete left-symmetric algebras. Math. Ann. 293(3), 569–578 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 22.Shima, H.: Homogeneous Hessian manifolds. Ann. Inst. Fourier (Grenoble) 30(3), 91–128 (1980)MathSciNetCrossRefMATHGoogle Scholar
- 23.Vinberg, È.B.: The theory of homogeneous convex cones. Tr. Mosk. Mat. Obs. 12, 303–358 (1963)MathSciNetMATHGoogle Scholar
- 24.Vinberg, È.B., Gorbatsevich, V.V., Onishchik, A.L.: Structure of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, p. iv+248. Springer, Berlin (1994)MATHGoogle Scholar