Wintgen ideal submanifolds: reduction theorems and a coarse classification
- 49 Downloads
Abstract
Wintgen ideal submanifolds in space forms are those ones attaining equality pointwise in the so-called DDVV inequality which relates the scalar curvature, the mean curvature and the scalar normal curvature. As conformal invariant objects, they are suitable to study in the framework of Möbius geometry. This paper continues our previous work in this program, showing that Wintgen ideal submanifolds can be divided into three classes: the reducible ones, the irreducible minimal ones in space forms (up to Möbius transformations), and the generic (irreducible) ones. The reducible Wintgen ideal submanifolds have a specific low-dimensional integrable distribution, which allows us to get the most general reduction theorem, saying that they are Möbius equivalent to cones, cylinders, or rotational surfaces generated by minimal Wintgen ideal submanifolds in lower-dimensional space forms.
Keywords
Wintgen ideal submanifolds DDVV inequality Möbius geometry Conformal Gauss map Minimal submanifoldsMathematics Subject Classification
53A30 53A55 53C42References
- 1.Burstall, F., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal geometry of surfaces in the 4-sphere and quaternions Lecture Notes in Mathematics, vol. 1772. Springer (2002)Google Scholar
- 2.Chen, B.Y.: Classification of Wintgen ideal surfaces in Euclidean \(4\)-space with equal Gauss and normal curvatures. Ann. Glob. Anal. Geom. 38, 145–160 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 3.Choi, T., Lu, Z.: On the DDVV conjecture and the comass in calibrated geometry (I). Math. Z. 260, 409–429 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 4.Dajczer, M., Tojeiro, R.: A class of austere submanifolds. Ill. J. Math. 45(3), 735–755 (2001)MathSciNetMATHGoogle Scholar
- 5.Dajczer, M., Tojeiro, R.: All superconformal surfaces in \(R^4\) in terms of minimal surfaces. Math. Z. 261(4), 869–890 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 6.Dajczer, M., Tojeiro, R.: Submanifolds of codimension two attaining equality in an extrinsic inequality. Math. Proc. Camb. Philos. Soc. 146(2), 461–474 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 7.De Smet, P.J., Dillen, F., Verstraelen, L., Vrancken, L.: A pointwise inequality in submanifold theory. Arch. Math. (Brno) 35, 115–128 (1999)MathSciNetMATHGoogle Scholar
- 8.Dillen, F., Fastenakels, J., Van Der Veken, J.: Remarks on an inequality involving the normal scalar curvature. In: Proceedings of the International Congress on Pure and Applied Differential Geometry-PADGE Brussels, pp. 83–92. Shaker Verlag, Aachen (2007)Google Scholar
- 9.Ferus, D.: On the completeness of nullity foliations. Mich. Math. J. 18, 61–64 (1971)MathSciNetCrossRefMATHGoogle Scholar
- 10.Ge, J., Tang, Z.: A proof of the DDVV conjecture and its equality case. Pac. J. Math. 237, 87–95 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 11.Guadalupe, I., Rodríguez, L.: Normal curvature of surfaces in space forms. Pac. J. Math. 106, 95–103 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 12.Li, T., Ma, X., Wang, C., Xie, Z.: New examples and classification of Möbius homogeneous Wintgen ideal submanifolds. in preparationGoogle Scholar
- 13.Li, T., Ma, X., Wang, C., Xie, Z.: Wintgen ideal submanifolds of codimension two, complex curves, and Möbius geometry. Tohoku Math. J. 68(4), 621–638 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 14.Li, T., Ma, X., Wang, C.: Deformation of hypersurfaces preserving the möbius metric and a reduction theorem. Adv. Math. 256, 156–205 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 15.Li, T., Ma, X., Wang, C.: Wintgen ideal submanifolds with a low-dimensional integrable distribution. Front. Math. China 10(1), 111–136 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 16.Liu, H., Wang, C., Zhao, G.: Möbius isotropic submanifolds in \(S^n\). Tohoku Math. J. 53, 553–569 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 17.Lu, Z.: Normal scalar curvature conjecture and its applications. J. Funct. Anal. 261, 1284–1308 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 18.Ma, X., Xie, Z.X.: The Möbius geometry of Wintgen ideal submanifolds. In: ICM 2014 Satellite Conference on Real and Complex Submanifolds, Springer Proceedings in Mathematics & Statistics, vol. 106, pp. 411–425 (2014)Google Scholar
- 19.Maltz, R.: Isometric immersions into spaces of constant curvature. Ill. J. Math. 15, 490–502 (1971)MathSciNetMATHGoogle Scholar
- 20.Petrovié-torgas̆ev, M., Verstraelen, L.: On Deszcz symmetries of Wintgen ideal submanifolds. Arch. Math. 44, 57–67 (2008)MathSciNetMATHGoogle Scholar
- 21.Van der Veken, J.: Ideal Lagrangian submanifolds. to appear in Recent Advances in the Geometry of Submanifolds, Contemporary Mathematics, American Mathematical SocietyGoogle Scholar
- 22.Wang, C.: Möbius geometry of submanifolds in \(S^n\). Manuscr. Math. 96, 517–534 (1998)CrossRefGoogle Scholar
- 23.Wintgen, P.: Sur l’inégalité de Chen-Willmore. C. R. Acad. Sci. Paris 288, 993–995 (1979)MathSciNetMATHGoogle Scholar
- 24.Xie, Z.X.: Wintgen ideal submanifolds with vanishing Möbius form. Ann. Glob. Anal. Geom. 48, 331–343 (2015)CrossRefMATHGoogle Scholar
- 25.Xie, Z.X., Li, T.Z., Ma, X., Wang, C.P.: Möbius geometry of three dimensional Wintgen ideal submanifolds In \({\mathbb{S}}^5\). Sci. China Math. 57, 1203–1220 (2014)MathSciNetCrossRefMATHGoogle Scholar