Skip to main content
Log in

Selberg and Ruelle zeta functions for non-unitary twists

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper we study the dynamical zeta functions of Ruelle and Selberg associated with the geodesic flow of a compact hyperbolic odd-dimensional manifold. These are functions of a complex variable s in some right half-plane of \(\mathbb {C}\). Using the Selberg trace formula for arbitrary finite dimensional representations of the fundamental group of the manifold, we establish the meromorphic continuation of the dynamical zeta functions to the whole complex plane. We explicitly describe the singularities of the Selberg zeta function in terms of the spectrum of certain twisted Laplace and Dirac operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbasch, D., Moscovici, H.: \(L^{2}\)-index and the Selberg trace formula. J. Funct. Anal. 53(2), 151–201 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bunke, U., Olbrich, M.: Selberg Zeta and Theta Functions: A Differential Operator Approach. Mathematical Research, vol. 83. Akademie, Berlin (1995)

    MATH  Google Scholar 

  3. Cheeger, J., Yau, S.T.: A lower bound for the heat kernel. Commun. Pure Appl. Math. 34(4), 465–480 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. I. McGraw-Hill Book Company, Inc., New York (1954). Based, in part, on notes left by Harry Bateman

    MATH  Google Scholar 

  6. Fried, D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 84(3), 523–540 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fried, D.: Meromorphic zeta functions for analytic flows. Commun. Math. Phys. 174(1), 161–190 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25. American Mathematical Society, Providence (2000). Translated from the 1997 German original by Andreas Nestke

    Google Scholar 

  9. Gilkey, P.: Invariance Theory: The Heat Equation and the Atiyah–Singer Index Theorem. Studies in Advanced Mathematics. Taylor & Francis, London (1994). https://books.google.de/books?id=RgW9i29_p7sC

  10. Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Grossen. Lecture Notes in Mathematics, vol. 55. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

  11. Harish-Chandra.: Discrete series for semisimple Lie groups. II. Explicit determination of the characters. Acta Math. 116, 1–111 (1966)

  12. Knapp, A.W.: Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton Mathematical Series, vol. 36. Princeton University Press, Princeton (1986)

    Book  MATH  Google Scholar 

  13. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley Classics Library, vol. I. Wiley, New York (1996). Reprint of the 1963 original, A Wiley-Interscience Publication

    Google Scholar 

  14. Lawson Jr., H.B., Michelsohn, M.L.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  15. Lubotzky, A., Mozes, S., Raghunathan, M.S.: The word and Riemannian metrics on lattices of semisimple groups. Inst. Hautes Études Sci. Publ. Math. 91, 5–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Markus, A.S.: Introduction to the spectral theory of polynomial operator pencils. Translations of Mathematical Monographs, vol. 71. American Mathematical Society, Providence (1988). Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver, With an appendix by M. V. Keldysh

  17. Marshall, S., Müller, W.: On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds. Duke Math. J. 162(5), 863–888 (2013). doi:10.1215/00127094-2080850

    Article  MathSciNet  MATH  Google Scholar 

  18. Matsushima, Y., Murakami, S.: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds. Ann. Math. 2(78), 365–416 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miatello, R.J.: On the Plancherel measure for linear Lie groups of rank one. Manuscr. Math. 29(2–4), 249–276 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miatello, R.J.: The Minakshisundaram–Pleijel coefficients for the vector-valued heat kernel on compact locally symmetric spaces of negative curvature. Trans. Am. Math. Soc. 260(1), 1–33 (1980)

    MathSciNet  MATH  Google Scholar 

  21. Müller, W.: The asymptotics of the Ray–Singer analytic torsion of hyperbolic 3-manifolds. In: Metric and Differential Geometry. The Jeff Cheeger anniversary volume. Selected papers based on the presentations at the international conference on metric and differential geometry, Tianjin and Beijing, China, 11–15 May 2009, pp. 317–352. Springer, Berlin (2012)

  22. Moscovici, H., Stanton, R.J.: Eta invariants of Dirac operators on locally symmetric manifolds. Invent. Math. 95(3), 629–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Müller, W.: A Selberg trace formula for non-unitary twists. Int. Math. Res. Not. IMRN 9, 2068–2109 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Pfaff, J.: Selberg and Ruelle zeta functions and the relative analytic torsion on complete odd-dimensional hyperbolic manifolds of finite volume. Ph.D. thesis, Bonn (2012)

  25. Ray, D.B., Singer, I.M.: \(R\)-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer Series in Soviet Mathematics. Springer, Berlin (1987). Translated from the Russian by Stig I. Andersson

  27. Simon, B.: Trace Ideals and Their Applications. Mathematical Surveys and Monographs, vol. 120, 2nd edn. American Mathematical Society, Providence (2005)

    Google Scholar 

  28. Spilioti, P.: The functional equations of the Selberg and Ruelle zeta functions for non-unitary twists. arXiv preprint arXiv:1507.05947 (2015)

  29. Taylor, M.: Pseudo-Differential Operators. Princeton University Press, Princeton (1981)

    Google Scholar 

  30. Wallach, N.R.: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, vol. 19. Marcel Dekker Inc., New York (1973)

    Google Scholar 

  31. Wallach, N.R.: On the Selberg trace formula in the case of compact quotient. Bull. Am. Math. Soc. 82(2), 171–195 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fischer, W., Lieb, I.: A Course in Complex Analysis: From Basic Results to Advanced Topics, 2012th edn. Vieweg+Teubner Verlag, Berlin (2011)

    MATH  Google Scholar 

  33. Wotzke, A.: Die Ruellesche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten. Ph.D. thesis, Bonn, Bonner Mathematische Schriften (2008)

Download references

Acknowledgements

The author wishes to acknowledge her supervisor Werner Müller for his invaluable guidance, suggestions, and insightful discussions as this article is part of her PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polyxeni Spilioti.

Appendix

Appendix

In Sects. 5 and 6, we define the twisted Bochner–Laplace and Dirac operator, respectively. These operators are associated with a non-unitary representation of the subgroup \(\varGamma \) and are no longer self-adjoint. However, the twisted operators \(\varDelta _{\tau ,\chi }^{\sharp }\) and \(D^{\sharp }_{\chi }(\sigma )^{2}\) have the same principal symbol as the operators \(\varDelta _{\tau }\otimes {{\mathrm{Id}}}_{V_{\chi }}\) and \(D(\sigma )^{2}\otimes {{\mathrm{Id}}}_{V_{\chi }}\), respectively, i.e.,

$$\begin{aligned}&\sigma _{\varDelta _{\tau ,\chi }^\sharp }(x,\xi )=||\xi ||^ {2}{{\mathrm{Id}}}_{({V_{\tau }\otimes V_{\chi })_{x}}},\\&\sigma _{D^{\sharp }_{\chi }(\sigma )^{2}}(x,\xi )=||\xi ||^{2}{{\mathrm{Id}}}_{(V_{\tau _{s}(\sigma )}\otimes V_{\chi })_{x}}, \end{aligned}$$

where \(x\in X\), \(\xi \in {{\mathrm{T}}}_{x}^{*}X,\xi \ne 0\), We include here the the spectral theory of non-self-adjoint operators, which is needed to develop the trace formulas and further to provide the proofs of the meromorphic continuations of the twisted dynamical zeta functions.

Setting 8.1

Let \(E\rightarrow X\) be a complex vector bundle over a smooth compact Riemannian manifold X of dimension d. Let \(D:C^{\infty }(X,E)\rightarrow C^{\infty }(X,E)\) be an elliptic differential operator of order \(m\ge 1\). Let \(\sigma _{D}\) be its principal symbol.

Definition 8.2

A spectral cut is a ray

$$\begin{aligned} R_{\theta }:=\left\{ \rho e^ {i\theta }: \rho \in [0,\infty ]\right\} , \end{aligned}$$

where \(\theta \in [0,2\pi )\).

Definition 8.3

The angle \(\theta \) is a principal angle for an elliptic operator D if

$$\begin{aligned} {{\mathrm{spec}}}(\sigma _{D}(x,\xi ))\cap R_{\theta }=\emptyset ,\quad \forall x\in X,\forall \xi \in T_{x}^{*}X,\xi \ne 0. \end{aligned}$$

Definition 8.4

We define the solid angle \(L_{I}\) associated with a closed interval I of \(\mathbb {R}\) by

$$\begin{aligned} L_{I}:=\{\rho e^ {i\theta }: \rho \in (0,\infty ), \theta \in I \}. \end{aligned}$$

Definition 8.5

The angle \(\theta \) is an Agmon angle for an elliptic operator D, if it is a principal angle for D and there exists \(\varepsilon >0\) such that

$$\begin{aligned} {{\mathrm{spec}}}(D)\cap L_{[\theta -\varepsilon ,\theta +\varepsilon ]}=\emptyset . \end{aligned}$$

Lemma 8.6

Let \(\varepsilon \) be an angle such that the principal symbol \(\sigma _{D}(x,\xi )\) of D, for \(\xi \in T_{x}^{*}X,\xi \ne 0\), does not take values in \( L_{[-\varepsilon ,\varepsilon ]}\). Then, the spectrum \({{\mathrm{spec}}}(D)\) of the operator D is discrete and for every \(\varepsilon \in (0,\frac{\pi }{2})\) there exists \(R>0\) such that \({{\mathrm{spec}}}(D)\) is contained in the set \(B(0,R)\cup L_{[-\varepsilon ,\varepsilon ]}\subset \mathbb {C}\).

Proof

The discreteness of the spectrum follows from [26, Theorem 8.4]. For the second statement see [26, Theorem 9.3].

Let \(\lambda _{k}\) be an eigenvalue of D and \(V_{\lambda _{k}}\) be the corresponding eigenspace. This is a finite dimensional subspace of \(C^{\infty }(X,E)\) invariant under D. We have that for every \(k\in \mathbb {N}\), there exist \(N_{k}\in \mathbb {N}\) such that

$$\begin{aligned}&(D-\lambda _{k}{{\mathrm{Id}}})^{N_{k}}V_{\lambda _{k}}=0;\\&\lim _{k\rightarrow \infty }|\lambda _{k}|=\infty . \end{aligned}$$

By [16] the space \(L^{2}(X,E)\) can be decomposed as

$$\begin{aligned} L^{2}(X,E)=\overline{\bigoplus _{k\ge 1}V_{\lambda _{k}}}. \end{aligned}$$

This is the generalization of the eigenspace decomposition of a self-adjoint operator .

Definition 8.7

We call algebraic multiplicity \(m(\lambda _{k})\) of the eigenvalue \(\lambda _{k}\) the dimension of the corresponding eigenspace \(V_{\lambda _{k}}\).

Fig. 1
figure 1

The discrete spectrum of the operator \(D^{\sharp }_{\chi }(\sigma )^{2}\)

By Lemma 8.6, there exists \(\varepsilon >0\) such that

$$\begin{aligned} {{\mathrm{spec}}}(D^{\sharp }_{\chi }(\sigma )^{2})\cap L_{[\theta -\varepsilon ,\theta +\varepsilon ]}=\emptyset . \end{aligned}$$

Since \(D^{\sharp }_{\chi }(\sigma )^{2}\) has discrete spectrum (Fig. 1), there exists also an \(r_{0}>0\) such that

$$\begin{aligned} {{\mathrm{spec}}}(D^{\sharp }_{\chi }(\sigma )^{2})\cap \{z\in \mathbb {C}:|z+1|\le 2r_{0}\}=\emptyset . \end{aligned}$$

We define a contour \(\varGamma _{\theta ,r_{0}}\) as follows.

$$\begin{aligned} \varGamma _{\theta ,r _{0}}=\varGamma _{1}\cup \ \varGamma _{2}\cup \varGamma _{3}, \end{aligned}$$

where \(\varGamma _{1}=\{-1+re^ {i\theta }:\infty >r\ge r_{0}\}\), \(\varGamma _{2}=\{-1+r_{0}e^ {ia}:\theta \le a\le \theta +2\pi \}\), \(\varGamma _{3}=\{-1+re^{i(\theta +2\pi )}:r_{0}\le r< \infty \}\). On \(\varGamma _{1}\), r runs from \(\infty \) to \(r_{0}\), \(\varGamma _{2}\) is oriented counterclockwise, and on \(\varGamma _{3}\), r runs from \(r_{0}\) to \(\infty \). We put

$$\begin{aligned} e^{-tD^{\sharp }_{\chi }(\sigma )^{2}}=\frac{i}{2\pi }\int _{\varGamma _{\theta ,r_{0}}}e^{-t\lambda }\big (D^{\sharp }_{\chi }(\sigma )^{2}- \lambda {{\mathrm{Id}}}\big )^{-1} \mathrm{d}\lambda . \end{aligned}$$
(8.1)

We have \(|e^{-t\lambda }|\le e^{-t\text {Re}(\lambda )}\). Furthermore, by [26, Corollary 9.2], there exists a positive constant \(c>0\) such that \(||(D^{\sharp }_{\chi }(\sigma )^{2}-\lambda {{\mathrm{Id}}})^{-1}||\le c |\lambda |^{-1}\), for \(\lambda \in \varGamma _{\theta ,r_{0}}\). Hence, the integral in (8.1) are well defined.

Given an Agmon angle \(\theta \) for the operator \(A_{\chi }^{\sharp }(\sigma )\) (see equations (5.24)–(5.26), p. 29) and \(r_{0}>0\), we consider a contour \(\varGamma _{\theta ,r_{0}}\) in the same way as for the operator \(D^{\sharp }_{\chi }(\sigma )^{2}\). Then, we put

$$\begin{aligned} e^{-tA_{\chi }^{\sharp }(\sigma )}=\frac{i}{2\pi }\int _{\varGamma _{\theta ,r_{0}}}e^{-t\lambda }(A_{\chi }^{\sharp }(\sigma )-\lambda {{\mathrm{Id}}})^{-1} \mathrm{d}\lambda . \end{aligned}$$
(8.2)

By [26, Corollary 9.2] and the fact that \(|e^{-t\lambda }|\le e^{-t\text {Re}(\lambda )}\), the integral in (8.2) is well defined.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spilioti, P. Selberg and Ruelle zeta functions for non-unitary twists. Ann Glob Anal Geom 53, 151–203 (2018). https://doi.org/10.1007/s10455-017-9571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9571-3

Keywords

Navigation