Skip to main content
Log in

Bott–Chern cohomology of solvmanifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study conditions under which sub-complexes of a double complex of vector spaces allow to compute the Bott–Chern cohomology. We are especially aimed at studying the Bott–Chern cohomology of special classes of solvmanifolds, namely, complex parallelizable solvmanifolds and solvmanifolds of splitting type. More precisely, we can construct explicit finite-dimensional double complexes that allow to compute the Bott–Chern cohomology of compact quotients of complex Lie groups, respectively, of some Lie groups of the type \(\mathbb {C}^n\ltimes _\varphi N\) where N is nilpotent. As an application, we compute the Bott–Chern cohomology of the complex parallelizable Nakamura manifold and of the completely solvable Nakamura manifold. In particular, the latter shows that the property of satisfying the \(\partial \overline{\partial }\)-Lemma is not strongly closed under deformations of the complex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeppli, A., On the cohomology structure of Stein manifolds. In: Aeppli A., Calabi E., Röhrl H. (eds) Proceedings of the Conference on Complex Analysis (Minneapolis, MN, 1964), pp. 58–70. Springer, Berlin (1965)

  2. Alessandrini, L., Bassanelli, G.: Small deformations of a class of compact non-Kähler manifolds. Proc. Am. Math. Soc. 109(4), 1059–1062 (1990)

    MATH  Google Scholar 

  3. Andrada, A., Barberis, M.L., Dotti Miatello, I.G.: Classification of abelian complex structures on 6-dimensional Lie algebras. J. Lond. Math. Soc. (2)83(1), 232–255 (2011). Corrigendum to “Classification of abelian complex structures on 6-dimensional Lie algebras”. J. Lond. Math. Soc. (2) 87(1), 319–320 (2013)

  4. Angella, D.: The cohomologies of the Iwasawa manifold and of its small deformations. J. Geom. Anal. 23(3), 1355–1378 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angella, D.: Cohomologies of certain orbifolds. J. Geom. Phys. 171, 117–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Angella, D., Franzini, M.G., Rossi, F.A.: Degree of non-Kählerianity for 6-dimensional nilmanifolds. Manuscr. Math. 148(1–2), 177–211 (2015)

    Article  MATH  Google Scholar 

  7. Angella, D., Kasuya, H.: Cohomologies of deformations of solvmanifolds and closedness of some properties. Math. Universalis. arXiv:1305.6709v1 [math.CV]

  8. Angella, D., Kasuya, H.: Symplectic Bott–Chern cohomology of solvmanifolds. J. Symplectic Geom. arXiv:1308.4258v1 [math.SG]

  9. Angella, D., Tomassini, A.: On cohomological decomposition of almost-complex manifolds and deformations. J. Symplectic Geom. 9(3), 403–428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Angella, D., Tomassini, A.: On the \(\partial \overline{\partial }\)-Lemma and Bott-Chern cohomology. Invent. Math. 192(1), 71–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Angella, D., Tomassini, A., Zhang, W.: On cohomological decomposability of almost-Kähler structures. Proc. Am. Math. Soc. 142(10), 3615–3630 (2014)

    Article  MATH  Google Scholar 

  12. Baily, W.L.: On the quotient of an analytic manifold by a group of analytic homeomorphisms. Proc. Natl. Acad. Sci. USA 40(9), 804–808 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barberis, M.L., Dotti Miatello, I.G., Miatello, R.J.: On certain locally homogeneous Clifford manifolds. Ann. Glob. Anal. Geom. 13(3), 289–301 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Belgun, F.A.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317(1), 1–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benson, Ch., Gordon, C.S.: Kähler and symplectic structures on nilmanifolds. Topology 27(4), 513–518 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bigolin, B.: Gruppi di Aeppli. Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 23(2), 259–287 (1969)

  17. Bismut, J.-M.: Hypoelliptic Laplacian and Bott–Chern Cohomology. A Theorem of Riemann–Roch–Grothendieck in Complex Geometry. Progress in Mathematics, vol. 305. Birkhäuser/Springer, Basel (2013)

  18. Bochner, S.: Compact groups of differentiable transformations. Ann. Math. (2) 46(3), 372–381 (1945)

  19. Bott, R., Chern, S.S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math. 114(1), 71–112 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ceballos, M., Otal, A., Ugarte, L., Villacampa, R.: Invariant complex structures on 6-nilmanifolds: classification, Frölicher spectral sequence and special Hermitian metrics. J. Geom. Anal. 26(1), 252–286 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Console, S.: Dolbeault cohomology and deformations of nilmanifolds. Rev. Unión Mat. Argent. 47(1), 51–60 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Console, S., Fino, A.: Dolbeault cohomology of compact nilmanifolds. Transform. Groups 6(2), 111–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Console, S., Fino, A.: On the de Rham cohomology of solvmanifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10(4), 801–818 (2011)

  24. Cordero, L.A., Fernández, M., Ugarte, L., Gray, A.: A general description in the terms of the Frölicher spectral sequence. Differ. Geom. Appl. 7(1), 75–84 (1997)

    Article  MATH  Google Scholar 

  25. Cordero, L.A., Fernández, M., Gray, A., Ugarte, L.: Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology. Trans. Am. Math. Soc. 352(12), 5405–5433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. de Andrés, L.C., Fernández, M., de León, M., Mencía, J.J.: Some six-dimensional compact symplectic and complex solvmanifolds. Rend. Mat. Appl. (7) 12(1), 59–67 (1992)

  27. de Bartolomeis, P., Tomassini, A.: On solvable generalized Calabi-Yau manifolds. Ann. Inst. Fourier 56(5), 1281–1296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dekimpe, K.: Semi-simple splittings for solvable Lie groups and polynomial structures. Forum Math. 12(1), 77–96 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Deligne, P., Griffiths, Ph, Morgan, J., Sullivan, D.P.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Demailly, J.-P.: Complex Analytic and Differential Geometry. http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (2012)

  31. de Rham, G.: Differentiable Manifolds: Forms, Currents, Harmonic Forms. Grundlehren der Mathematischen Wissenschaften, vol. 266. Springer, Berlin (1984)

  32. Dungey, N., ter Elst, A.F.M., Robinson, D.W.: Analysis on Lie Groups with Polynomial Growth. Progress in Mathematics, vol. 214. Birkhäuser, Boston (2003)

  33. Fernández, M., Muñoz, V., Santisteban, J.A.: Cohomologically Kähler manifolds with no Kähler metrics. Int. J. Math. Sci. 2003(52), 3315–3325 (2003)

    Article  MATH  Google Scholar 

  34. Griffiths, Ph., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994). Reprint of the 1978 original

  35. Hasegawa, K.: Minimal models of nilmanifolds. Proc. Am. Math. Soc. 106(1), 65–71 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hasegawa, K.: Small deformations and non-left-invariant complex structures on six-dimensional compact solvmanifolds. Differ. Geom. Appl. 28(2), 220–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I(8), 289–331 (1960)

    MathSciNet  MATH  Google Scholar 

  38. Kasuya, H.: Formality and hard Lefschetz properties of aspherical manifolds. Osaka J. Math. 50(2), 439–455 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Kasuya, H.: Minimal models, formality and hard Lefschetz properties of solvmanifolds with local systems. J. Differ. Geom. 93(2), 269–298 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kasuya, H.: Techniques of computations of Dolbeault cohomology of solvmanifolds. Math. Z. 273(1–2), 437–447 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kasuya, H.: Hodge symmetry and decomposition on non-Kähler solvmanifolds. J. Geom. Phys. 76, 61–65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kasuya, H.: Geometrical formality of solvmanifolds and solvable Lie type geometries. In: Geometry of Transformation Groups and Combinatorics. RIMS Kôkyûroku Bessatsu, vol. B39, pp. 21–33. Research Institute for Mathematical Science (RIMS), Kyoto (2013). http://hdl.handle.net/2433/207826

  43. Kasuya, H.: de Rham and Dolbeault cohomology of solvmanifolds with local systems. Math. Res. Lett. 21(4), 781–805 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kasuya, H.: The Frölicher spectral sequence of certain solvmanifolds. J. Geom. Anal. 25(1), 317–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kodaira, K.: Complex Manifolds and Deformation of Complex Structures (translated from the 1981 Japanese original by Kazuo Akao, Reprint of the 1986, English edn. Classics in Mathematics. Springer, Berlin (2005)

    MATH  Google Scholar 

  46. Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. (2) 71(1), 43–76 (1960)

  47. Kooistra, R.: Regulator currents on compact complex manifolds. Ph.D. thesis. niversity of Alberta (2011)

  48. Latorre, A., Ugarte, L., Villacampa, R.: On the Bott-Chern cohomology and balanced Hermitian nilmanifolds. Int. J. Math. 25(6), 1450057 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, T.-J., Zhang, W.: Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds. Commun. Anal. Geom. 17(4), 651–684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Macrì, M.: Cohomological properties of unimodular six dimensional solvable Lie algebras. Differ. Geom. Appl. 31(1), 112–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. McCleary, J.: A User’s Guide to Spectral Sequences. Cambridge Studies in Advanced Mathematics, 58, 2nd edn. Cambridge University Press, Cambridge (2001)

  52. Milnor, J.: Curvature of left-invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mostow, G.D.: Cohomology of topological groups and solvmanifolds. Ann. Math. (2) 73(1), 20–48 (1961)

  54. Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10(1), 85–112 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. (2) 59(3), 531–538 (1954)

  56. Popovici, D.: Deformation openness and closedness of various classes of compact complex manifolds; examples. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(2), 255–305 (2014)

  57. Raissy, J.: Normalizzazione di campi vettoriali olomorfi. Tesi di Laurea Specialistica, Università di Pisa. http://etd.adm.unipi.it/theses/available/etd-06022006-141206/ (2006)

  58. Rollenske, S.: Geometry of nilmanifolds with left-invariant complex structure and deformations in the large. Proc. Lond. Math. Soc. 99(2), 425–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Rollenske, S.: Dolbeault cohomology of nilmanifolds with left-invariant complex structure. In: Ebeling, W., Hulek, K., Smoczyk, K. (eds.) Complex and Differential Geometry: Conference Held at Leibniz Universität Hannover, September 14–18, 2009. Springer Proceedings in Mathematics, vol. 8, pp. 369–392. Springer, Berlin (2011)

    Chapter  Google Scholar 

  60. Sakane, Y.: On compact complex parallelisable solvmanifolds. Osaka J. Math. 13(1), 187–212 (1976)

    MathSciNet  MATH  Google Scholar 

  61. Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157(2–3), 311–333 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Satake, I.: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. USA 42(6), 359–363 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  63. Schweitzer, M.: Autour de la cohomologie de Bott–Chern, Prépublication de l’Institut Fourier no. 703 (2007). arXiv:0709.3528

  64. Tomasiello, A.: Reformulating supersymmetry with a generalized Dolbeault operator. J. High Energy Phys. 2008(2), 010 (2008)

    Article  MathSciNet  Google Scholar 

  65. Tseng, L.-S., Yau, S.-T.: Cohomology and hodge theory on symplectic manifolds: I. J. Differ. Geom. 91(3), 383–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tseng, L.-S., Yau, S.-T.: Cohomology and hodge theory on symplectic manifolds: II. J. Differ. Geom. 91(3), 417–443 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Tseng, L.-S., Yau, S.-T.: Generalized cohomologies and supersymmetry. Commun. Math. Phys. 326(3), 875–885 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Varouchas, J.: Sur l’image d’une variété Kählérienne compacte. In: Norguet, F. (ed.) Fonctions de plusieurs variables complexes V, Sémin. F. Norguet, Paris 1979–1985. Lecture Notes in Mathematics, vol. 1188, pp. 245–259 (1986). https://www.zbmath.org/?q=an:0587.32041

  69. Voisin, C.: Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, 10. Société Mathématique de France, Paris (2002)

    MATH  Google Scholar 

  70. Wang, H.-C.: Complex parallisable manifolds. Proc. Am. Math. Soc. 5(5), 771–776 (1954)

    Article  MathSciNet  Google Scholar 

  71. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics, vol. 94. Springer, New York (1983) (corrected reprint of the 1971 edition)

  72. Wu, C.-C.: On the geometry of superstrings with torsion. Ph.D. Thesis, Harvard University, Proquest LLC, Ann Arbor (2006)

  73. Yamada, T.: A pseudo-Káhler structure on a nontoral compact complex parallelizable solvmanifold. Geom. Dedicata 112(1), 115–122 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to warmly thank Adriano Tomassini for his constant support and encouragement, for his several advices, and for many inspiring conversations. The second author would like to express his gratitude to Toshitake Kohno for helpful suggestions and stimulating discussions. The authors would like also to thank Luis Ugarte for suggestions and remarks. Thanks also to Maria Beatrice Pozzetti and to the anonymous Referees, whose suggestions improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Angella.

Additional information

During the preparation of this work, the first author has been granted with a research fellowship by Istituto Nazionale di Alta Matematica INdAM, and he is supported by the Project PRIN “Varietá reali e complesse: geometria, topologia e analisi armonica,” by the Project FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni,” by the Project SIR2014 “Analytic aspects in complex and hypercomplex geometry” code RBSI14DYEB, and by GNSAGA of INdAM. The second author is supported by JSPS Research Fellowships for Young Scientists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angella, D., Kasuya, H. Bott–Chern cohomology of solvmanifolds. Ann Glob Anal Geom 52, 363–411 (2017). https://doi.org/10.1007/s10455-017-9560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9560-6

Keywords

Mathematics Subject Classification

Navigation