Skip to main content
Log in

Taut contact circles and bi-contact metric structures on three-manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Geiges and Gonzalo (Invent. Math. 121:147–209 1995, J. Differ. Geom. 46:236–286 1997, Acta. Math. Vietnam 38:145–164 2013) introduced and studied the notion of taut contact circle on a three-manifold. In this paper, we introduce a Riemannian approach to the study of taut contact circles on three-manifolds. We characterize the existence of a taut contact metric circle and of a bi-contact metric structure. Then, we give a complete classification of simply connected three-manifolds which admit a bi-H-contact metric structure. In particular, a simply connected three-manifold admits a homogeneous bi-contact metric structure if and only if it is diffeomorphic to one of the following Lie groups: SU(2), \({\widetilde{SL}}(2,{\mathbb {R}})\), \({\widetilde{E}}(2)\), E(1, 1). Moreover, we obtain a classification of three-manifolds which admit a Cartan structure \((\eta _1,\eta _2)\) with the so-called Webster function \({\mathcal {W}}\) constant along the flow of \(\xi _1\) (equivalently \(\xi _2\)). Finally, we study the metric cone, i.e., the symplectization, of a bi-contact metric three-manifold. In particular, the notion of bi-contact metric structure is related to the notions of conformal symplectic couple (in the sense of Geiges (Duke Math. J. 85:701–711 1996)) and symplectic pair (in the sense of Bande and Kotschick (Trans. Am. Math. Soc. 358(4):1643–1655 2005)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apostolov, V., Gauduchon, P., Grantcharov, G.: Bihermitian structures on complex surfaces. Proc. London Math. Soc. (3) 79, 414–428 (1999) Corrigendum, 92 (2006), 200–202

  2. Bande, G., Kotschick, D.: The geometry of symplectic pairs. Trans. Am. Math. Soc. 358(4), 1643–1655 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bande, G., Kotschick, D.: The geometry of recursion operators. Commun. Math. Phys. 280(3), 737–749 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Mani-folds Second Edition, Progress in Math. 203. Birkhäuser, Basel (2010)

    Book  Google Scholar 

  5. Boyer, C.P., Galicki, K.: Sasakian Geometry Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  6. Calvaruso, G., Perrone, D., Vanhecke, L.: Homogeneity on three-dimensional contact metric manifolds. Isr. J. Math. 114, 301–321 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chern, S.S., Hamilton, R.S.: On Riemannian metrics adapted to three-dimensional contact manifolds. Lecture Notes in Math, pp. 279–305. Springer, Berlin (1985)

    Google Scholar 

  8. Donaldson, S.K.: Two-forms on four-manifolds and elliptic equations. In: Inspired by S.S. Chern, World Scientific, (2006) arXiv:math.DG/0607083 v1 4 July 2006

  9. Dragomir, S., Perrone, D.: Harmonic Vector Fields: Variational Principles and Differential Geometry. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  10. Eliashberg, Y.M., Thurston, W.P.: Confoliations. University Lecture Series, 13. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  11. Geiges, H., Gonzalo, J.: Contact geometry and complex surfaces. Invent. Math. 121, 147–209 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geiges, H.: Symplectic couples on \(4\)-manifolds. Duke Math. J. 85, 701–711 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Geiges, H., Gonzalo, J.: Contact circles on 3-manifolds. J. Differ. Geom. 46, 236–286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geiges, H., Gonzalo, J.: Fifteen years of contact circles and contact spheres. Acta Math. Vietnam. 38, 145–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Milnor, J.: Curvature of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitsumatsu, Y.: Anosov flows and non-Stein symplectic manifolds. Ann. Inst. Fourier 45, 1407–1421 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nikolayevsky, Y., Park, J.H.: \(H\)-contact unit tangent sphere bundles of Riemannian manifolds. Diff. Geom. Appl. 49, 301–311 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Perrone, D.: Homogeneous contact Riemannian three-manifolds. Ill. Math. J. 42(2), 243–256 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Perrone, D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Diff. Geom. Appl. 20, 367–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Perrone, D.: Stability of the Reeb vector field of H-contact manifolds. Math. Z. 263, 125–147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Salamon, S.: Special structures on four-manifolds. Riv. Mat. Univ. Parma 17(4), 109–123 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314(1), 349–379 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zessin, M.: On contact p-spheres. Ann. Inst. Fourier. 55(4), 1167–1194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Perrone.

Additional information

Supported by funds of the University of Salento-Lecce and MIUR(PRIN).

Work made within the program of G.N.S.A.G.A.-C.N.R.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrone, D. Taut contact circles and bi-contact metric structures on three-manifolds. Ann Glob Anal Geom 52, 213–235 (2017). https://doi.org/10.1007/s10455-017-9555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9555-3

Keywords

Mathematics Subject Classification

Navigation