Skip to main content
Log in

On the classification of 4-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper we study four-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature when \(m\notin \{0,\pm 1,-2,\pm \infty \}\) and \(\rho \notin \{\frac{1}{4},\frac{1}{6}\}\). We prove that a non-trivial \((m,\rho )\)-quasi-Einstein metric g (not necessarily complete) is locally isometric to one of the following: (i) \({\mathcal {B}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {B}}^2_\frac{R}{2(m+2)}\) is the northern hemisphere in the two-dimensional (2D) sphere \({\mathbb {S}}^2_\frac{R}{2(m+2)}\), \({\mathbb {N}}_\delta \) is a 2D Riemannian manifold with constant curvature \(\delta \), and R is the constant scalar curvature of g. (ii) \({\mathcal {D}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {D}}^2_\frac{R}{2(m+2)}\) is half (cut by a hyperbolic line) of hyperbolic plane \({\mathbb {H}}^2_\frac{R}{2(m+2)}\). (iii) \({\mathbb {H}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\). (iv) A certain singular metric with \(\rho =0\). (v) A locally conformal flat metric. By applying this local classification, we obtain a classification of the complete \((m,\rho )\)-quasi-Einstein manifolds given the condition of a harmonic Weyl curvature. Our result can be viewed as a local classification of gradient Einstein-type manifolds. A corollary of our result is the classification of \((\lambda ,4+m)\)-Einstein manifolds, which can be viewed as (m, 0)-quasi-Einstein manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barros, A., Ribeiro Jr., E., Silva Filho, J.: Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous manifolds. Differ. Geom. Appl. 35, 60–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik, 3 Folge, Band 10. Springer, Berlin (1987)

    Google Scholar 

  3. Cao, H.D.: Recent progress on Ricci solitons, recent advances in geometric analysis, 138, Adv. Lect. Math. (ALM), 11. Int. Press, Somerville (2010)

    Google Scholar 

  4. Cao, H.D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Trans. Am. Math. Soc. 364, 2377–2391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Case, J., Shu, Y.J., Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29, 93–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Case, J.: The nonexistence of quasi-Einstein metrics. Pac. J. Math. 248(2), 277–284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Catino, G.: Generalized quasi Einstein manifolds with Harmonic Weyl tensor. Math. Z. 271(3–4), 751–756 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Catino, G.: A note on four dimensional (anti-)self-dual quasi-Einstein manifolds. Differ. Geom. Appl. 30, 660–664 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Catino, G., Mantegazza, C., Mazzieri, L., Rimoldi, M.: Locally conformally flat quasi-Einstein manifolds. J. Reine Angew. Math. 2013(675), 181–189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Catino, G., Mazzieri, L., Mongodi, S.: Rigidity of gradient Einstein shrinkers. arXiv:1307.3131

  11. Catino, G., Mastrolia, P., Monticelli, D., Rigoli, M.: On the geometry of gradient Einstein-type manifolds. arXiv:1402.3453

  12. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 2nd Ser. 144(1), 189–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Q., He, C.: On bach flat warped product Einstein manifolds. Pac. J. Math. 265(2), 313–326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Derdzinski, A.: Classification of certain compact riemannian manifolds with harmonic curvature and non-parallel ricci tensor. Math. Z. 172, 273–280 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, C., Petersen, P., Wylie, W.: On the classification of warped product Einstein metrics. Commun. Anal. Geom. 20(2), 271–311 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, C., Petersen, P., Wylie, W.: Warped product Einstein metrics over spaces with constant scalar curvature. Asian J. Math. 18(1), 159–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, C., Petersen, P., Wylie, W.: Warped product rigidity. Asian J. Math. 19(1), 135–170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, C., Petersen, P., Wylie, W.: Uniqueness of warped product Einstein metrics and applications. J. Geom. Anal. 25(4), 2617–2644 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, G., Wei, Y.: The classification of \((m,\rho )\)-quasi-Einstein manifolds. Ann. Glob. Anal. Geom. 44, 269–282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jauregui, J., Wylie, W.: Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi-Einstein manifolds. J. Geom. Anal 25(1), 668–708 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, D.S., Kim, Y.H.: Compact Einstein warped product space with nonpositive scalar curvature. Proc. Am. Math. Soc. 131(8), 2573–2576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, J.: On a classification of 4-d gradient Ricci solitons with harmonic weyl curvature. arxiv:1604.02827 (To appear in JGA)

  23. Mastrolia, P., Rimoldi, M.: Some triviality results for quasi-Einstein manifolds and Einstein warped products. Geom. Dedicata 169, 225–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea Government(MOE) (No. NRF-2010-0011704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwoo Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J. On the classification of 4-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature. Ann Glob Anal Geom 51, 379–399 (2017). https://doi.org/10.1007/s10455-017-9542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9542-8

Keywords

Mathematics Subject Classification

Navigation