Skip to main content
Log in

On f-non-parabolic ends for Ricci-harmonic metrics

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we study gradient Ricci-harmonic soliton metrics and quasi Ricci-harmonic metrics (both metrics are called Ricci-harmonic). First, we prove that all ends of \(\tau \)-quasi Ricci-harmonic metrics with \(\tau >1\) should be f-non-parabolic if \(\lambda =0,\mu >0\), or \(\lambda <0, \mu \ge 0\). For the case that \(\lambda<0, \mu < 0\), we can also arrive at the f-non-parabolic property if we add a condition about the scalar curvature. Furthermore, we discuss the connectivity at infinity for quasi Ricci-harmonic metrics. We also conclude that all ends of steady or expanding gradient Ricci-harmonic solitons should be f-non-parabolic, based on which we establish structure theorems for these two solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10. Springer-Verlag, Berlin (1987)

  2. Cao, H.D., Zhou, D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85(2), 175–186 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Cao, H.D., Zhu, X.P.: A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10, 165–492 (2006)

    Article  MATH  Google Scholar 

  4. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geom. 6, 119–128 (1971)

    MathSciNet  MATH  Google Scholar 

  5. Eells, J., Sampson, J.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–169 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Enders, J., Müller, R., Topping, P.: On type I singularities in Ricci flow. Commun. Anal. Geom. 19(5), 905–922 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, P.: Curvature and Function Theory on Riemannian manifolds, Surveys in Differential Geometry: Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer, VII. International Press, Cambridge (2000)

    Google Scholar 

  8. Li, P., Tam, L.F.: Harmonic functions and the structure of complete manifolds. J. Differ. Geom. 33, 139–168 (1991)

    Google Scholar 

  9. Li, P., Wang, J.P.: Weighted Poincaré inequality and rigidity of complete manifolds. Ann. Sci. de l’École Normale Supérieure 39, 921–982 (2006)

    Article  MATH  Google Scholar 

  10. Li, P., Wang, J.P.: Complete manifolds with positive spectrum. J. Differ. Geom. 58, 501–534 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84(10), 1295–1361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y.: Eigenvalues and entropies under the harmonic-Ricci flow. Pac. J. Math. 267, 141–184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. List, B.: Evolution of an Extended Ricci Flow System. Ph.D thesis, AEI Potsdam, 2006. Available at http://www.diss.fu-berlin.de/2006/180/index.html

  14. List, B.: Evolution of an extended Ricci flow system. Commun. Anal. Geom. 16, 1007–1048 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lott, J.: Some geometric properties of the Bakry–Émery Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mantegazza, C., Müller, R.: Perelman’s entropy functional at type I singularities of the Ricci flow. J. für die Reine Angew. Math. 703, 173–199 (2015)

  17. Morgan, J., Tian, G.: Ricci flow and the Poincaré conjecture. Clay Mathematics Monographs, 3, American Mathematical Society (2007)

  18. Müller, R.: The Ricci Flow Coupled with Harmonic Map Heat Flow. Ph.D thesis, ETH Zürich, 2009. Available at http://e-collection.library.ethz.ch//view/eth:41938

  19. Müller, R.: Ricci flow coupled with harmonic map flow. Ann. Sci. lÉcole Normale Supérieure 45(4), 101–142 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Müller, R.: Monotone volume formulas for geometric flows. J. Für Die Reine Angew. Math. 643, 39–57 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Munteanu, O., Sesum, N.: On gradient Ricci solitons. J. Geom. Anal. 23, 539–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Munteanu, O., Wang, J.P.: Smooth metric measure spaces with nonnegative curvature. Commun. Anal. Geom. 19(3), 451–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Munteanu, O., Wang, J.P.: Analysis of the weighted Laplacian and applications to Ricci solitons. Commun. Anal. Geom. 20(1), 55–94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Naber, A.: Noncompact shrinking four solitons with nonnegative curvature. J. Für Die Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Perelman, G.: The Entropy Formula for the Ricci Flow and its Geometric Applications. arxiv:Math.DG/0211159

  26. Qian, Z.M.: Estimates for weight volumes and applications. Q. J. Math. Oxf. J. 48, 235–242 (1987)

    Article  Google Scholar 

  27. Schoen, R., Yau, S.T.: Lectures on Differential Geometry. International Press, Cambridge, MA (1994)

    MATH  Google Scholar 

  28. Wang, L.F.: On \(L_f^p-\)spectrum and \(\tau -\)quasi-Einstein metric. J. Math. Anal. Appl. 389, 195–204 (2012)

    Article  Google Scholar 

  29. Wang, L.F.: On quasi Ricci-harmonic metrics. Ann. Acad. Sci. Fennic Math. 41, 417–437 (2016)

    Article  MATH  Google Scholar 

  30. Wang, L.F.: A splitting theorem for the weighted measure. Ann. Global Anal. Geom. 42, 79–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Differ. Geom. 83(2), 377–405 (2009)

    MATH  Google Scholar 

  32. Wu, P.: On the potential function of gradient steady Ricci solitons. J. Geom. Anal. 23(1), 221–228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, F., Shen, J.: Volume growth for gradient shrinking solitons of Ricci-harmonic flow. Sci. Chin. Math. 55, 1221–1228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Feng Wang.

Additional information

The author was supported in part by the NSF of Jiangsu Province (BK20141235).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L.F. On f-non-parabolic ends for Ricci-harmonic metrics. Ann Glob Anal Geom 51, 91–107 (2017). https://doi.org/10.1007/s10455-016-9525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-016-9525-1

Keywords

Mathematics Subject Classification

Navigation