Skip to main content
Log in

Abstract

We define a new differential geometric structure, called Lie rackoid. A Lie rackoid differentiates to Leibniz algebroids in a similar way as Lie groupoids differentiate to Lie algebroids. Its main ingredient is a self-distributive product on the manifold of bisections of a smooth precategory. We show that the tangent algebroid of a Lie rackoid is a Leibniz algebroid and that Lie groupoids give rise via conjugation to a Lie rackoid. Our main objective are large classes of examples, including a Lie rackoid integrating the Dorfman bracket without the cocycle term of the standard Courant algebroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The concept of a Leibniz algebra appears to our knowledge first in a paper by Blokh in 1965.

  2. Equivalently, for all bisections \(\Sigma \) and all elements \(\gamma \in \Gamma \), the composition \( \sigma \rhd \gamma \) is defined to be an element of \(\Gamma \) whose source is \(\underline{\sigma } \circ s (\gamma ) \) and whose target is \(\underline{\sigma } \circ t (\gamma ) \).

  3. Note that this condition implies that the p-image of a bisection of X is a bisection of \(\Gamma \).

References

  1. Alzaareer, H., Schmeding, A.: Differentiable mappings on products with different degrees of differentiability in the two factors. Expo. Math. 33(2), 184–222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, Z., Liu, Z.L., Zhong, D.S.: On the existence of global bisections of Lie groupoids. Acta Math. Sin. (Engl. Ser.) 25(6), 1001–1014 (2009)

  3. Covez, S.: L’intégration locale des algèbres de Leibniz. Ph.D. Thesis, Nantes 2010, a part is published as: the local integration of Leibniz algebras. Ann. Inst. Fourier (Grenoble) 63(1), pp. 1–35. The entire thesis is available at https://tel.archives-ouvertes.fr/tel-00495469 (2013)

  4. Crainic, M., Fernandes, R.L.: Integrability of Lie brackets. Ann. Math. 157(2), 575–620 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crainic, M., Moerdijk, I.: A homology theory for étale groupoids. J. Reine Angew. Math. 521, 25–46 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Fenn, R., Rourke, C.: Racks and links in codimension two. J. Knot Theory Ramif. 1(4), 343–406 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grabowski, J., Marmo, G.: Non-antisymmetric versions of Nambu-Poisson and algebroid brackets. J. Phys. A 34(18), 3803–3809 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ibanez, R., de Leon, M., Marrero, J.C., Padron, E.: Leibniz algebroid associated with a Nambu-Poisson structure. J. Phys. A 32(46), 8129–8144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kinyon, M.: Leibniz algebras, Lie racks, and digroups. J. Lie Theory 17(1), 99–114 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Kinyon, M., Weinstein, A.: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. Am. J. Math. 123(3), 525–550 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li-Bland, D., Severa, P.: Integration of exact Courant algebroids. Electron. Res. Announc. Math. Sci. 19, 58–76 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Loday, J.L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. 39(3–4), 269–293 (1993)

    MathSciNet  Google Scholar 

  13. Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Math. Soc. Lecture Note, vol. 213. Cambridge University Press, Cambridge (2005)

  14. Mehta, R.A., Tang, X.: From double Lie groupoids to local Lie 2-groupoids. Bull. Braz. Math. Soc. (N.S.) 42(4), 651–681 (2011)

  15. Michor, P.W.: Manifolds of differentiable mappings. Shiva Mathematics Series, vol. 3. Shiva Publishing Ltd., Nantwich (1980)

  16. Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids. Cambridge studies in advanced mathematics, vol. 91. Cambridge University Press, Cambridge (2003)

  17. Schmeding, A., Wockel, C.: The Lie groupe of bisections of a Lie groupoid. Ann. Global Anal. Geom. 48(1), 87–123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wade, A., On some properties of Leibniz algebroids. Infinite dimensional Lie groups in geometry and representation theory, pp. 65–78. World Sci. Publ, River Edge, Washington, DC (2000)

  19. Sheng, Y., Zhu, C.: Higher Extensions of Lie Algebroids and Application to Courant Algebroids (2011). arXiv:1103.5920

Download references

Acknowledgments

FW thanks Université de Lorraine for financing several visits to Metz where this research has been carried out. C. Laurent-Gengoux and F. Wagemann thank Christoph Wockel for useful discussions. They also thank the anonymous referee for suggestions which led to numerous improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Wagemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent-Gengoux, C., Wagemann, F. Lie rackoids. Ann Glob Anal Geom 50, 187–207 (2016). https://doi.org/10.1007/s10455-016-9507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-016-9507-3

Keywords

Navigation