Skip to main content
Log in

Two-dimensional solutions to the c-Plateau problem in \(\mathbb {R}^{3}\)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give several regularity results for two-dimensional solutions to the c-Plateau problem in \(\mathbb {R}^{3}:\) given \(c>0\) and an integer one-rectifiable current \(\varGamma \) without boundary in \(\mathbb {R}^{3},\) we study integer two-rectifiable currents which minimize c-isoperimetric mass \(\mathbf {M}^{c}(T):=\mathbf {M}(T)+c \mathbf {M}(\partial T)^{2},\) where \(\mathbf {M}\) is the usual mass on currents, amongst all integer two-rectifiable currents T with boundary of the form \(\partial T = \varGamma + \varSigma \) where \(\varGamma ,\varSigma \) have disjoint supports. We show the following three results for \(\mathbf {T}_{c}\) a solution to the c-Plateau problem with \(\partial \mathbf {T}_{c} = \varGamma +\varSigma _{c}\): if \(\varSigma _{c}\) is a smooth closed embedded curve, then \(\varSigma _{c}\) parameterized by arc-length must have at some point large third derivative; \(\mathbf {T}_{c}\) cannot have a tangent cone at a singular point of \(\varSigma _{c}\) supported in a plane but with constant orientation; \(\varSigma _{c}\) is regular wherever we can write the support of \(\mathbf {T}_{c}\) as a finite union of \(C^{1}\) surfaces-with-boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allard, W.K.: On the first variation of a varifold-boundary behavior. Ann. Math. 101, 418–446 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allard, W.K., Almgren, F.J., Jr.: The structure of stationary one dimensional varifolds with positive density. Invent. Math. 34, 83–97 (1976)

  4. Almgren, F.: Optimal isoperimetric inequalities. Indiana Univ. Math. J. 35, 451–547 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brothers, J.E.: Existence and structure of tangent cones at the boundary of an area-minimizing integral current. Indiana Univ. Math. J. 26, 1027–1044 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ecker, K.: Area-minimizing integral currents with movable boundary parts of prescribed mass. Ann. I. H. Poincaré-An. 6, 261–293 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Federer, J.: Geometric Measure Theory. Springer-Verlag New York Inc, New York (1969)

    MATH  Google Scholar 

  8. Hardt, B., Simon, L.: Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. Math. 110, 439–486 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoffman, D.A.: Surfaces of constant mean curvature in manifolds of constant curvature. J. Differ. Geom. 8, 161–176 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Rosales, L.: The geometric structure of solutions to the two-valued minimal surface equation. Calc. Var. Partial Differ. 39, 59–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rosales, L.: Discontinuous solutions to the two-valued minimal surface equation. Adv. Calc. Var. 4, 363–395 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rosales, L.: The c-isoperimetric mass of currents and the c-Plateau problem. J. Geom. Anal. 25, 471–511 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosales, L.: The \(q\)-valued minimal surface equation. Houst. J. Math. 41, 749–765 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Rosales, L.: Regularity for solutions to the \(c\)-Plateau problem with free boundary having small singular set, and generally in codimension zero. Adv. Calc. Var. 4. doi:10.1515/acv-2013-0023 (2015)

  15. Rosales, L.: Partial boundary regularity for co-dimension one area-minimizing currents at immersed \(C^{1,\alpha }\) tangential boundary points (2015). arXiv:1508.04229 [math.DG]

  16. Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34, 741–797 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Simon, L.: Lectures on Geometric Measure Theory. Centre for Mathematical Analysis, Australian National University, Australia (1984)

  18. Simon, L., Wickramasekera, N.: Stable branched minimal immersions with prescribed boundary. J. Differ. Geom. 75, 143–173 (2007)

    MathSciNet  MATH  Google Scholar 

  19. White, B.: Regularity of area-minimizing hypersurfaces at boundaries with multiplicity. Ann. Math. Stud. 103, 293–301 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leobardo Rosales.

Appendix

Appendix

In this section we prove the ODE lemma used in the proof of Theorem 8.

Lemma 3

Suppose \(\beta \in (0,1),\) and that with

$$\begin{aligned} \tilde{U} = \{ y \in \mathbb {R}^{2}: y_{1} > \delta ^{\beta } |y|^{1+\beta }, |y| < 1 \}, \end{aligned}$$

for some \(\delta >0,\) we have a function

$$\begin{aligned} \tilde{u} \in C^{\infty }(\tilde{U}) \cap C^{1,\beta }({{\mathrm{clos}}}\tilde{U}) \end{aligned}$$

satisfying \(\tilde{u}(0)=0,\) \(D \tilde{u}(0)=0,\) and

$$\begin{aligned} \sup _{y \in \tilde{U}} \frac{|D^{2} \tilde{u}|}{|y|^{\beta -1}} < \infty . \end{aligned}$$

In addition, suppose we have two curves

$$\begin{aligned} \sigma _{1},\sigma _{2} \in C^{1}([0,\tilde{\epsilon });\{0\} \cup {{\mathrm{graph}}}_{\tilde{U}} \tilde{u}) \cap C^{\infty }((0,\tilde{\epsilon });{{\mathrm{graph}}}_{\tilde{U}} \tilde{u}) \end{aligned}$$

parameterized by arc length with \(\sigma _{1}(0) = \sigma _{2}(0) = 0,\) \(\sigma _{1}'(0) = \sigma _{2}'(0) = e_{1},\) and suppose there is \(K \in (0,\infty )\) so that \(|\sigma _{1}''(t)| = |\sigma _{2}''(t)| = K\) for each \(t \in (0,\tilde{\epsilon }).\) If

$$\begin{aligned} \sigma _{1}''(t) \in T_{\sigma _{1}(t)} {{\mathrm{graph}}}_{\tilde{U}} \tilde{u}, \ \sigma _{2}''(t) \in T_{\sigma _{2}(t)} {{\mathrm{graph}}}_{\tilde{U}} \tilde{u} \end{aligned}$$

for each \(t \in (0,\tilde{\epsilon }),\) and

$$\begin{aligned} \lim _{t \searrow 0} \sigma _{1}''(t) = \lim _{t \searrow 0} \sigma _{2}''(t) = -Ke_{2}, \end{aligned}$$

then \(\sigma _{1}(t) = \sigma _{2}(t)\) for \(t \in (0,\tilde{\epsilon }).\)

Proof

We can take \(C \in (0,\infty )\) so that

$$\begin{aligned} |D^{2} \tilde{u}(\mathbf {p}(x))| \le C |(\mathbf {p}(x))|^{\beta -1} \end{aligned}$$

whenever \(x \in \sigma _{1}((0,\tilde{\epsilon })) \cup \sigma _{2}((0,\tilde{\epsilon })),\) where \(\mathbf {p}:\mathbb {R}^{3} \rightarrow \mathbb {R}^{2}\) is the projection map. For \(\nu \) the upward pointing unit normal of \({{\mathrm{graph}}}_{\tilde{U}} \tilde{u},\) we may also assume \(C \in (0,\infty )\) is such that for \(x,\tilde{x} \in \sigma _{1}((0,\tilde{\epsilon })) \cup \sigma _{2}((0,\tilde{\epsilon }))\)

$$\begin{aligned} |\nu (x)-\nu (\tilde{x})| \le C |x-\tilde{x}| \cdot \left| |\mathbf {p}(x)| - |\mathbf {p}(x)-\mathbf {p}(\tilde{x})| \right| ^{\beta -1}. \end{aligned}$$
(33)

Since \(\sigma _{\ell }''(t) \in T_{\sigma _{\ell }(t)} {{\mathrm{graph}}}_{\tilde{U}} \tilde{u}\) for each \(t \in (0,\tilde{\epsilon })\) and \(\ell =1,2,\) \(\sigma _{1}'(0) = \sigma _{2}'(0)= e_{1}\), \(\lim _{t \searrow 0} \sigma _{1}''(t) = \lim _{t \searrow 0} \sigma _{2}''(t) = -Ke_{2},\) and \(\nu (0)=e_{3},\) then

$$\begin{aligned} \sigma _{1}''(t) = K \sigma _{1}'(t) \times \nu (\sigma _{1}(t))\quad \text { and }\; \sigma _{2}''(t) = K \sigma _{2}'(t) \times \nu (\sigma _{1}(t)) \end{aligned}$$

for \(t \in (0,\tilde{\epsilon }),\) so that

$$\begin{aligned} |\sigma _{1}''(t)-\sigma _{2}''(t)| \le K \left[ |\sigma _{1}'(t)-\sigma _{2}'(t)| + | \nu (\sigma _{1}(t))- \nu (\sigma _{2}(t))| \right] . \end{aligned}$$

Letting \(d(t) = \sigma _{1}(t)-\sigma _{2}(t),\) then (33) implies for \(t \in (0,\epsilon )\)

$$\begin{aligned} |d''(t)| \le K \left[ |d'(t)| + C |d(t)| \cdot \left| |\mathbf {p}(\sigma _{1}(t))| - |\mathbf {p}(\sigma _{1}(t))- \mathbf {p}(\sigma _{2}(t)) | \right| ^{\beta -1} \right] . \end{aligned}$$
(34)

Since \(\lim _{\searrow 0} d''(t) =0,\) then we can choose \(\tau \in (0,\min \{ K,\frac{1}{2K}, \frac{1}{(2C)^{1/\beta }},\tilde{\epsilon } \})\) so that \(|d''(t)| < \frac{1}{8K}\) for \(t \in (0,\tau ).\) Therefore,

$$\begin{aligned} |d'(t)| \le \frac{t}{8K}\quad \text { and }\; |d(t)| \le \frac{t^{2}}{16K} \end{aligned}$$

for \(t \in (0,\tau ).\) Since \(\sigma _{1}'(0) = e_{1}\) and \(\sigma _{1}\) is parameterized by arc-length, we can also assume \(\sigma _{1}(t) \cdot e_{1} > \frac{t}{2}\) for each \(t \in (0,\tau ).\)

We conclude that for \(t \in (0,\tau )\)

$$\begin{aligned} \frac{1}{2} \sigma _{1}(t) \cdot e_{1} > K^{1/2} |d(t)|^{1/2} \ge |d(t)|. \end{aligned}$$

This implies for \(t \in (0,\tau )\)

$$\begin{aligned} \left| |\mathbf {p}(\sigma _{1}(t))|-|\mathbf {p}(\sigma _{1}(t))-\mathbf {p}(\sigma _{2}(t))| \right| ^{\beta -1} \le \left( \frac{1}{2} \sigma _{1}(t) \cdot e_{1} \right) ^{\beta -1}. \end{aligned}$$
(35)

From (34), (35) we compute for \(t \in (0,\tau )\)

$$\begin{aligned} |d''(t)|\le & {} K \left[ |d'(t)| + C |d(t)| \cdot (K^{1/2} |d(t)|^{1/2})^{\beta -1} \right] \\\le & {} K \left[ |d'(t)| + C K^{\frac{\beta -1}{2}} |d(t)|^{\frac{\beta +1}{2}} \right] \\\le & {} \frac{t}{8} + \frac{C t^{\beta +1}}{4^{\beta +1}} \\\le & {} \frac{(1+C \tau ^{\beta }) t}{4} < t. \end{aligned}$$

We now argue iteratively. Suppose we have shown for \(n \ge 1\) that

$$\begin{aligned} |d''(t)| < K^{n-1} t^{n} \end{aligned}$$

whenever \(t \in (0,\tau ).\) This implies

$$\begin{aligned} |d'(t)| \le \frac{K^{n-1}}{n+1} t^{n+1}\quad \text { and }\; |d(t)| \le \frac{K^{n-1}}{(n+1)(n+2)} t^{n+2}, \end{aligned}$$

which gives

$$\begin{aligned} \sigma _{1}(t) \cdot e_{1} \ge \frac{1}{2} \left( \frac{(n+1)(n+2)}{K^{n-1}} \right) ^{\frac{1}{n+2}} |d(t)|^{\frac{1}{n+2}}. \end{aligned}$$

Using (34), (35) again we conclude for \(t \in (0,\tau )\)

$$\begin{aligned} |d''(t)|\le & {} K \left[ |d'(t)| + C|d(t)| \cdot (\sigma _{1}(t) \cdot e_{1}/2)^{\beta -1} \right] \\\le & {} K \left[ |d'(t)| + 4^{1-\beta } C \left( \frac{(n+1)(n+2)}{K^{n-1}} \right) ^{\frac{\beta -1}{n+2}} |d(t)|^{1+\frac{\beta -1}{n+2}} \right] \\\le & {} K \left[ \frac{K^{n-1}}{n+1} t^{n+1} + 4^{1-\beta } C \left( \frac{K^{n-1}}{(n+1)(n+2)} \right) t^{n+1+\beta } \right] \\\le & {} \left[ \frac{1}{n+1} + \frac{4^{1-\beta } C \tau ^{\beta }}{(n+1)(n+2)} \right] K^{n} t^{n+1} \\< & {} K^{n} t^{n+1}, \end{aligned}$$

since \(C \tau ^{\beta } < \frac{1}{2}\) and \(n \ge 1.\)

We have thus shown \(|d''(t)| \le K^{n-1} t^{n}\) for each \(n \ge 1\) whenever \(t \in (0,\tau ).\) Since \(\tau \le \frac{1}{2K},\) then \(|d''(t)| \le \frac{1}{K} (1/2)^{n}\) for each \(n \ge 1,\) which means \(d''(t) = 0\) for \(t \in (0,\tau ).\) The lemma follows by considering \(\sigma _{1}(\tau )=\sigma _{2}(\tau ).\)

The proof of Lemma 3 also gives the following slight modification.

Lemma 4

Suppose \(M \subset B_{\rho }(0)\) is a \(C^{2}\) surface-with-boundary, with \(0 \in {{\mathrm{clos}}}M\) and \(T_{0} M = \mathbb {R}^{2}\) (where possibly \(0 \in \partial M\)). Also, suppose we have two curves

$$\begin{aligned} \sigma _{1},\sigma _{2} \in C^{1}([0,\epsilon ); B_{\rho }(0) \cap {{\mathrm{clos}}}M) \cap C^{2}((0,\epsilon );B_{\rho }(0) \cap {{\mathrm{clos}}}M) \end{aligned}$$

parameterized by arc length with \(\sigma _{1}(0) = \sigma _{2}(0) = 0,\) \(\sigma _{1}'(0) = \sigma _{2}'(0) = e_{1},\) and suppose there is \(K \in (0,\infty )\) so that \(|\sigma _{1}''(t)| = |\sigma _{2}''(t)| = K\) for each \(t \in (0,\epsilon ).\) If

$$\begin{aligned} \sigma _{1}''(t) \in T_{\sigma _{1}(t)} M, \ \sigma _{2}''(t) \in T_{\sigma _{2}(t)} M \end{aligned}$$

for each \(t \in (0,\epsilon )\) (including when \(\sigma _{1}(t) \in {{\mathrm{clos}}}M\) or \(\sigma _{2}(t) \in {{\mathrm{clos}}}M\)), and

$$\begin{aligned} \sigma _{1}''(0) = \sigma _{2}''(0) = -Ke_{2}, \end{aligned}$$

then \(\sigma _{1}(t) = \sigma _{2}(t)\) for \(t \in (0,\epsilon ).\)

Proof

Follows by the proof of Lemma 3, essentially by noting we can take \(\beta = 1.\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales, L. Two-dimensional solutions to the c-Plateau problem in \(\mathbb {R}^{3}\) . Ann Glob Anal Geom 50, 129–163 (2016). https://doi.org/10.1007/s10455-016-9505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-016-9505-5

Keywords

Mathematics Subject Classification

Navigation