Skip to main content
Log in

Some examples of vanishing Yamabe invariant and minimal volume, and collapsing of inequivalent smoothings and PL-structures

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this short note, exploits of constructions of \(\mathcal {F}\)-structures coupled with technology developed by Cheeger–Gromov and Paternain–Petean are seen to yield a procedure to compute minimal entropy, minimal volume, Yamabe invariant and to study collapsing with bounded sectional curvature on inequivalent smooth structures and inequivalent PL-structures within a fixed homeomorphism class. We compute these fundamental Riemannian invariants for every high-dimensional smooth manifold on the homeomorphism class of any smooth manifold that admits a Riemannian metric of zero sectional curvature. This includes all exotic and all fake tori of dimension greater than four. We observe that the minimal volume is not an invariant of the smooth structures, yet the Yamabe invariant does discern the standard smooth structure from all the others. We also observe that the fundamental group places no restriction on the vanishing of the minimal volume and collapse with bounded sectional curvature for high-dimensional manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F.: On the groups J(X)–IV. Topology 5, 21–71 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonelli, P.L., Burghelea, D., Kahn, P.J.: Gromoll groups, \({\rm{Diff}}S^n\)and bilinear constructions of exotic spheres. Bull. Am. Math. Soc. 76, 772–777 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baues, O., Tuschmann, W.: Seifert fiberings and collapsing infrasolv spaces, arXiv:1209.2450v1 (2012)

  4. Besse, A.L.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, 1987. xii + 510

  5. Bessières, A.L.: Un théorème de rigidité différentielle. Comment. Math. Helv. 73, 443–479 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brieskorn, E.: Beispiele zur differentialtopologie von singularitäten. Invent. Math. 2, 1–14 (1996)

    Article  MathSciNet  Google Scholar 

  7. Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded I. J. Differ. Geom. 23, 309–346 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Cheeger, J., Rong, X.: Existence of polarized F-structures on collapsed manifolds with bounded curvature and diameter. Geom. Funct. Anal. 6, 411–429 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, J.F., Kirk, P.: Lecture notes in algebraic topology. Graduate Studies in Mathematics 35, Amer. Math. Soc. Providence, RI, 2001. xvi+367 pp

  10. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 16–144 (1912)

    Google Scholar 

  11. Farrell, F.T., Gogolev, A.: Examples of expanding endomorphisms on fake tori. J. Topol. 7, 805–816 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farrell, F.T., Jones, L.E.: Rigidity for aspherical manifolds with \({\pi }_1\subset GL_m({\mathbb{R}})\). Asian J. Math. 2, 215–262 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischer, D., Kalinin, B., Spatzier, R., with an appendix by Davis, J.F.: Global Rigidity of higher rank Anosov actions on tori an nilmanifolds. J. Am. Math. Soc. 26, 167–198 (2013)

  14. Gompf, R.E., Stipsicz, A.I.: 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, Amer. Math. Soc. Providence, RI, 1999. xvi+558 pp

  15. Gromov, M.: Volume and bounded cohomology. Publ. Math. Inst. Hautes Etud. Sci. 56, 1–99 (1982)

    Google Scholar 

  16. Gromov, M., Lawson, H.B.: Spin and scalar curvature in the presence of a fundamental group. I. Ann. Math. Vol. 111, 209–230 (1980)

  17. Grove, K., Wilhelm, F.: Metric constraints on exotic spheres via Alexandrov geometry. J. Reine Angew. Math. 487, 201–217 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Hirzebruch, F.: Singularities and exotic spheres, Séminaire Bourbaki 19e année, 1966/67, No. 314, p. 13–32

  19. Hitchin, N.: Harmonic spinos. Adv. Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsiang, W.C., Shaneson, J.L.: Fake tori, the Annulus conjecture, and the Conjectures of Kirby. Proc. Nat. Acad. Sci. U.S.A 62, 687–691 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsiang, W.C., Wall, C.T.C.: On homotopy tori II. Bull. Lond. Math. Soc. 1, 341–342 (1969)

    Article  MathSciNet  Google Scholar 

  22. Kervaire, M.A., Milnor, J.: Groups of homotopy spheres I. Ann. Math. 77, 504–537 (1963)

  23. LeBrun, C.: Kodaira dimension and the Yamabe problem. Commun. Anal. Geom. 7, 1119–1125 (1999)

    Article  MathSciNet  Google Scholar 

  24. López de Medrano, S.: Involutions on manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 59, Springer-Verlag, New York-Heidelberg, 1971. ix + 103 pp

  25. Milnor, J.: On manifolds homeomorphic to the 7-sphere. Ann. Math. 64, 399–405 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  26. Milnor, J.: Remarks Concerning Spin Manifolds, Differential and Combinatorial Topology, 55–62. Princeton Univ. Press, Princeton, NJ (1968)

    Google Scholar 

  27. Montgomery, D., Yang, C.T.: Differentiable actions on homotopy seven spheres II, Proc. Conf. on Transformation Groups: 125–134. Springer-Verlag, New York (1967). 1968

  28. Paternain, G.P., Petean, J.: Minimal entropy and collapsing with curvature bounded from below. Invent. Math. 151, 415–450 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Paternain, G.P., Petean, J.: Collapsing manifolds obtained by Kummer-type constructions. Trans. Am. Math. Soc. 361(8), 4077–4090 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Petean, J.: The Yamabe invariant of simply connected manifolds. J. Reine Angew. Math. 523, 225–231 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Schoen, R.: Variational theory for the total scalar functional for Riemannian metrics and related topics. Springer Lect. Notes Math. 1365, 120–154 (1987)

    Article  MathSciNet  Google Scholar 

  32. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscr. Math. 28, 159–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schultz, R.: Circle actions on homotopy spheres bounding plumbing manifolds 36, 297–300 (1972)

  34. Soma, T.: The Gromov invariant of links. Invent. Math. 64, 445–454 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Thorpe, J.A.: Parallelizability and flat manifolds. Proc. Am. Math. Soc. 16, 138–142 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wall, C.T.C.: On homotopy tori and the annulus theorem. Bull. Lond. Math. Soc. 1, 95–97 (1969)

    Article  MATH  Google Scholar 

  37. Wall, C.T.C: Surgery on compact manifolds Second Ed. Edited and with a foreword by Ranicki, A.A (ed.) Mathematical Surveys and Monographs, 69. Amer. Math. Soc., Providence, RI, 1999. xvi + 203 pp

Download references

Acknowledgments

We are indebted to Jim Davis for kindly bringing [13, Appendix] to our attention, without which we could have not proven our main result as stated. We thank Frank Quinn, Andrew Ranicki, and Terry Wall for helpful e-mail correspondence. We thank Bernd Ammann, Oliver Baues, Fernando Galaz-García, Marco Radeschi, and Wilderlich Tuschmann for interesting conversations. We gratefully acknowledge support from the University of Fribourg and the organizers of its Riemannian Topology Seminar 2015 for a very pleasant and productive meeting during which part of this paper was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, R. Some examples of vanishing Yamabe invariant and minimal volume, and collapsing of inequivalent smoothings and PL-structures. Ann Glob Anal Geom 49, 177–194 (2016). https://doi.org/10.1007/s10455-015-9486-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-015-9486-9

Keywords

Navigation