Skip to main content
Log in

Killing and twistor spinors with torsion

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study twistor spinors (with torsion) on Riemannian spin manifolds \((M^{n}, g, T)\) carrying metric connections with totally skew-symmetric torsion. We consider the characteristic connection \(\nabla ^{c}=\nabla ^{g}+\frac{1}{2}T\) and under the condition \(\nabla ^{c}T=0\), we show that the twistor equation with torsion w.r.t. the family \(\nabla ^{s}=\nabla ^{g}+2sT\) can be viewed as a parallelism condition under a suitable connection on the bundle \(\Sigma \oplus \Sigma \), where \(\Sigma \) is the associated spinor bundle. Consequently, we prove that a twistor spinor with torsion has isolated zero points. Next we study a special class of twistor spinors with torsion, namely these which are T-eigenspinors and parallel under the characteristic connection; we show that the existence of such a spinor for some \(s\ne 1/4\) implies that \((M^{n}, g, T)\) is both Einstein and \(\nabla ^{c}\)-Einstein, in particular the equation \({{\mathrm{Ric}}}^{s}=\frac{{{\mathrm{Scal}}}^{s}}{n}g\) holds for any \(s\in \mathbb {R}\). In fact, for \(\nabla ^{c}\)-parallel spinors we provide a correspondence between the Killing spinor equation with torsion and the Riemannian Killing spinor equation. This allows us to describe 1-parameter families of non-trivial Killing spinors with torsion on nearly Kähler manifolds and nearly parallel \({{\mathrm{G}}}_2\)-manifolds, in dimensions 6 and 7, respectively, but also on the 3-dimensional sphere \({{\mathrm{S}}}^{3}\). We finally present applications related to the universal and twistorial eigenvalue estimate of the square of the cubic Dirac operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In this paper all the manifolds, tensor fields and other geometric objects under consideration, are assumed to be smooth.

References

  1. Agricola, I.: Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory. Comm. Math. Phys. 232(3), 535–563 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agricola, I.: The Srní lectures on non-integrable geometries with torsion. Arch. Math. 42(5), 5–84 (2006)

  3. Agricola, I., Becker-Bender, J., Kim, H.: Twistorial eigenvalue estimates for generalized Dirac operators with torsion. Adv. Math. 243, 296–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agricola, I., Chiossi, S., Friedrich, Th., Höll, J.: Spinorial description of \({\rm SU}_{3}\)-manifolds. J. Geom. Phys. 98, 535–555 (2015)

  5. Agricola, I., Ferreira, A.C.: Einstein manifolds with skew torsion. Oxf. Quart. J. 65, 717–741 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agricola, I., Friedrich, Th: On the holonomy of connections with skew-symmetric torsion. Math. Ann. 328, 711–748 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Agricola, I., Friedrich, Th: The Casimir operator of a metric connection with skew-symmetric torsion. J. Geom. Phys. 50, 188–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agricola, I., Friedrich, Th: 3-Sasakian manifolds in dimension seven, their spinors and \({\rm G}_2\)-structures. J. Geom. Phys. 60, 326–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Agricola, I., Friedrich, Th, Höll, J.: \({\rm Sp}(3)\)-structures on 14-dimensional manifolds. J. Geom. Phys. 69, 12–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Agricola, I., Höll, J.: Cones of \(G\)-manifolds and Killing spinors with skew torsion. Ann. Mat. Pura Appl. 194, 673–718 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Agricola, I., Friedrich, Th, Nagy, P.-A., Puhle, C.: On the Ricci tensor in the common sector of Type II string theory. Class. Quantum Grav. 22, 2569–2577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Alexandrov, B., Semmelmann, U.: Deformations of nearly parallel \({\rm G}_2\)-structures. Asian J. Math. 6(4), 713–744 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bär, C.: The Dirac operator on space forms of positive curvature. J. Math. Soc. Japan 48(1), 69–83 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bär, C.: Real Killing spinors and holonomy. Commun. Math. Phys. 154, 509–521 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Baum, H., Friedrich, Th, Grunewald, R., Kath, I.: Twistors and Killing spinors on Riemannian manifolds. Teubner Verlagsgesellschaft, Stuttgart etc. B. G (1991)

  16. Bismut, J.M.: A local index theorem for non-Kählerian manifolds. Math. Ann. 284, 681–699 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Becker-Bender, J.: Dirac-Operatoren und Killing-Spinoren mit Torsion, Ph.D. Thesis, University of Marburg (2012)

  18. Boyer, C., Galicki K.: 3-Sasakian manifolds. In: LeBrun C., Wang M. (eds.) Surveys in Differential Geometry VI, Essays on Einstein manifolds. pp. 123–184, International Press (1999)

  19. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. 126, 525–576 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Buchholz, V.: Spinor equations in Weyl geometry, arXiv:math/9901125v2

  21. Butruille, J.-B.: Espace de twisteurs reduit d’une variete presque hermitienne de dimension 6, Ann. Inst. Fourier 57, 1451–1485 (2007)

  22. Chrysikos, I.: Invariant connections with skew-torsion and \(\nabla \)-Einstein manifolds. J. Lie Theory 26, 11–48 (2016)

    MathSciNet  Google Scholar 

  23. Cortés, V., Vásquez, J.J.: Locally homogeneous nearly Kähler manifolds, arXiv:1410.6912

  24. Dalakov, P., Ivanov, S.: Harmonic spinors of Dirac operator of connection with torsion in dimension 4. Class. Quant. Grav. 18, 253–265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Friedrich, Th.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97, 117–146 (1980)

  26. Friedrich, Th.: A remark of the first eigenvalue of the Dirac operator on 4-dimensional manifolds. Math. Nachr. 102, 53–56 (1981)

  27. Friedrich, Th.: On the conformal relation between twistors and Killing spinors. Rend. Circ. Mat. Palermo Ser II(22), 59–75 (1989)

  28. Friedrich, Th.: Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25. American Mathematical Society, Providence (2000)

  29. Friedrich, Th.: \({\rm G}_2\)-manifolds with parallel characteristic torsion. Dif. Geom. App. 25, 632–648 (2007)

  30. Friedrich, Th., Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Glob. Anal. Geom. 3(3), 265–273 (1985)

  31. Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002)

  32. Friedrich, Th., Kath, I.: Einstein manifolds of dimension five with small first Eigenvalue of the Dirac operator. J. Differ. Geom. 9, 263–279 (1989)

  33. Friedrich, Th., Kath, I.: 7-dimensional compact Riemannian manifolds with Killing spinors. Comm. Math. Phys. 133, 543–561 (1990)

  34. Friedrich, Th., Kath, I., Moroianu, A., Semmelmann, U.: On nearly parallel \({\rm G}_2\)-structures. J. Geom. Phys. 23, 259–286 (1997)

  35. Friedrich, Th., Kim, E.C.: The Einstein-Dirac equation on Riemannian spin manifolds. J. Geom. Phys. 33, 128–172 (2000)

  36. Ginoux, N.: The Dirac Spectrum. Lectures Notes in Mathematics, vol. 1976. Springer-Verlag, Berlin Heidelberg (2009)

  37. Goette, S., Kitchloo, N., Shankar, K.: Diffeomorphism type of the Berger space \({\rm SO}(5)/{\rm SO}(3)\). Am. J. Math. 126(2), 395–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Grunewald, R.: Six-dimensional Riemannian manifolds with a real Killing spinor. Ann. Glob. Anal. Geom. 8, 43–59 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ionescu, A.M., Slesar, V., Visinescu, M., Vîlci, G.E.: Transversal Killing and twistor spinors associated to basic Dirac operators, arXiv:1302.2739v2

  40. Ivanov, S., Papadopoulos, G.: Vanishing theorems and strings backgrounds. Class. Quant. Grav. 18, 1089–1110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kostant, B.: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J. 100(3), 447–501 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lichnerowicz, A.: Spin manifolds, Killing spinors and universality of the Hijazi inequality. Lett. Math. Phys. 13, 331–344 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nagy, P.A.: Skew-symmetric prolongations of Lie algebras and applications, J. Lie Theory 23, 1–33 (2013)

  44. Olmos, C., Reggiani, S.: The skew-torsion holonomy theorem and naturally reductive spaces. J. Reine Angew. Math. 664, 29–53 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Tanno, S.: The topology of almost contact Riemannian manifolds. Ill. J. Math 12, 700–717 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author acknowledges support by GAČR (Czech Science Foundation), post-doctoral grant GP14-24642P. He warmly thanks Ilka Agricola (Marburg) and Thomas Friedrich (Berlin) for valuable discussions that improved this work, as well as, Ivan Minchev (Brno) and Arman Taghavi-Chabert (Brno) for very useful comments. He also acknowledges FB12 at Philipps-Universität Marburg for its hospitality during a research stay in April 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Chrysikos.

Appendix A. The endomorphism \(\sigma _{T}\) on the spinor bundle \(\Sigma \)

Appendix A. The endomorphism \(\sigma _{T}\) on the spinor bundle \(\Sigma \)

Relations (4.1) and (4.3) have another important consequence, related with the eigenspinors of the endomorphism defined by the 4-form \( \sigma _{T}\) (or equivalently dT) in the Clifford algebra. In particular, the results that we describe below are known (see [31, Lem. 10.7], [11, Thm. 1.1]), but our proofs are different.

Proposition 6.6

([31, Lem. 10.7], [11, Thm. 1.1]) On a nearly Kähler manifold \((M^{6}, g, J)\) the spinor fields \(\varphi ^{\pm }\in \Sigma _{\pm 2\Vert T\Vert }\) are eigenspinors of the endomorphism defined by the 4-form \( \sigma _{T}\). In particular,

$$\begin{aligned} \sigma _{T}\cdot \varphi ^{\pm } =-\frac{{{\mathrm{Scal}}}^{c}}{4}\cdot \varphi ^{\pm }=-\frac{3}{2}\Vert T\Vert ^{2}\cdot \varphi ^{\pm }=-3\tau _{0}\cdot \varphi ^{\pm }. \end{aligned}$$

Similarly, on a proper nearly parallel \({{\mathrm{G}}}_2\)-manifold the spinor field \(\varphi _{0}\in \Sigma _{-\sqrt{7}\Vert T\Vert }\) is eigenspinor of the endomorphism defined by the 4-form \( \sigma _{T}\). In particular,

$$\begin{aligned} \sigma _{T}\cdot \varphi _{0} =-\frac{{{\mathrm{Scal}}}^{c}}{4}\cdot \varphi _{0}=-3\Vert T\Vert ^{2}\cdot \varphi _{0}=-\frac{7}{12}\tau _{0}^{2}\cdot \varphi _{0}. \end{aligned}$$

Proof

We present a direct proof based on (4.1) and (4.3), respectively. Consider a local orthonormal frame \(\{e_{i}\}\). In the nearly Kähler case \((M^{6}, g, J)\) and due to (4.1), it holds that

$$\begin{aligned} (e_{i}\lrcorner T)\cdot \varphi ^{\pm }=\mp \Vert T\Vert e_{i}\cdot \varphi ^{\pm }, \quad \forall i\in \{1, \ldots , 6\}. \end{aligned}$$

Then, because \((2\sigma _{T}-3\Vert T\Vert ^{2})\cdot \varphi ^{\pm }=\sum _{i}(e_{i}\lrcorner T)\cdot (e_{i}\lrcorner T)\cdot \varphi ^{\pm }\) (see Appendix C in [3]), we immediately get

$$\begin{aligned} (2\sigma _{T}-3\Vert T\Vert ^{2})\cdot \varphi ^{\pm }= & {} \mp \Vert T\Vert \sum _{i}(e_{i}\lrcorner T)\cdot e_{i}\cdot \varphi ^{\pm } =\mp 3\Vert T\Vert T\cdot \varphi ^{\pm }\\= & {} \mp 3\Vert T\Vert \Big (\pm 2\Vert T\Vert \Big )\cdot \varphi ^{\pm }=-6\Vert T\Vert ^{2}\cdot \varphi ^{\pm }. \end{aligned}$$

Similarly, for a 7-dimensional (proper) nearly parallel \({{\mathrm{G}}}_2\)-manifold \((M^{7}, g, \omega )\) we easily conclude that

$$\begin{aligned} (2\sigma _{T}-3\Vert T\Vert ^{2})\cdot \varphi _{0}= & {} \sum _{i}(e_{i}\lrcorner T)\cdot (e_{i}\lrcorner T)\cdot \varphi _{0}\overset{(4.3)}{=}\frac{3\Vert T\Vert }{\sqrt{7}}\sum _{i}(e_{i}\lrcorner T)\cdot e_{i}\cdot \varphi _{0}\\= & {} \frac{9\Vert T\Vert }{\sqrt{7}} T\cdot \varphi _{0}\overset{(4.2)}{=} -9 \Vert T\Vert ^{2}\cdot \varphi _{0}, \end{aligned}$$

and the claim follows. \(\square \)

Combining the expression for \(\sigma _{T}\) and the equality \(T^{2}=-2\sigma _{T}+\Vert T\Vert ^{2}\), it is easy to compute also the action of \(T^{2}\) on \(\nabla ^{c}\)-parallel spinors lying in \(\Sigma _{\gamma }\). In particular, for a \(\nabla ^{c}\)-parallel spinor \(\varphi \) the action \(T^{2}\cdot \varphi \) in encrypted in the kernel of the Casimir operator \(\Omega :=\Delta _{T}+\frac{1}{16}\Big [2{{\mathrm{Scal}}}^{g}+\Vert T\Vert ^{2}\Big ]-\frac{1}{4}T^{2}\) [7]. Any \(\nabla ^{c}\)-parallel belongs in the kernel of \(\Omega \), hence it satisfies the equation (see for example [8])

$$\begin{aligned} T^{2}\cdot \varphi =\frac{1}{4}\Big [2{{\mathrm{Scal}}}^{g}+\Vert T\Vert ^{2}\Big ]\cdot \varphi . \end{aligned}$$

This formula in combination with \(T^{2}=-2\sigma _{T}+\Vert T\Vert ^{2}\), gives rise to another way for the computation of \(\sigma _{T}\cdot \varphi \). Finally, for the action \(T^{2}\cdot \varphi \) the relation \(T\cdot \varphi =\gamma \varphi \) can be applied twice which yields the same result, i.e. \(T^{2}\cdot \varphi =\gamma ^{2}\varphi \) with \(\gamma ^{2}=\frac{1}{4}\Big [2{{\mathrm{Scal}}}^{g}+\Vert T\Vert ^{2}\Big ]\) by Theorem 3.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrysikos, I. Killing and twistor spinors with torsion. Ann Glob Anal Geom 49, 105–141 (2016). https://doi.org/10.1007/s10455-015-9483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-015-9483-z

Keywords

Mathematics Subject Classification

Navigation