Annals of Global Analysis and Geometry

, Volume 48, Issue 4, pp 331–343 | Cite as

Wintgen ideal submanifolds with vanishing Möbius form

  • Zhenxiao XieEmail author


Wintgen ideal submanifolds in space forms are those ones attaining equality pointwise in the so-called DDVV inequality which relates to the scalar curvature, the mean curvature and the scalar normal curvature. They are conformal invariant objects and hence can be studied in the framework of Möbius geometry. In this paper, we discuss Wintgen ideal submanifolds with vanishing Möbius form. In particular, for those ones with codimension 2, we can give a complete classification.


Wintgen ideal submanifolds DDVV inequality Möbius form 

Mathematics Subject Classification

53A30 53A55 53C42 



This work is supported by the Fundamental Research Funds for the Central Universities.The author would like to thank Prof. C. P. Wang, Prof. X. Ma and Prof. T. Z. Li for many helpful discussions on Wintgen ideal submanifolds in the past two years. Finally, I am grateful to the referees for their critical viewpoints and suggestions, which improve the exposition and correct many errors.


  1. 1.
    Bryant, R.: Minimal surfaces of constant curvature in \({\mathbb{S}}^n\). Trans. Am. Math. Soc. 290, 259–271 (1985)zbMATHGoogle Scholar
  2. 2.
    Burstall, F., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal geometry of surfaces in the 4-sphere and quaternions. Lecture notes in mathematics, vol. 1772. Springer, New York (2002)Google Scholar
  3. 3.
    Chen, B.Y.: Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures. Ann. Glob. Anal. Geom. 38, 145–160 (2010)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cheng, Q.M., Shu, S.C.: A Möbius characterization of submanifolds. J. Math. Soc. Jpn. 58, 904–925 (2006)MathSciNetGoogle Scholar
  5. 5.
    Choi, T., Lu, Z.Q.: On the DDVV conjecture and the comass in calibrated geometry (I). Math. Z. 260, 409–429 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dajczer, M., Tojeiro, R.: All superconformal surfaces in \({\mathbb{R}}^4\) in terms of minimal surfaces. Math. Z. 261, 869–890 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dajczer, M., Tojeiro, R.: Submanifolds of codimension two attaining equality in an extrinsic inequality. Math. Proc. Camb. Philos. Soc. 146, 461–474 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    De Smet, P.J., Dillen, F., Verstraelen, L., Vrancken, L.: A pointwise inequality in submanifold theory. Arch. Math. 35, 115–128 (1999)zbMATHGoogle Scholar
  9. 9.
    Ge, J.Q., Tang, Z.Z.: A proof of the DDVV conjecture and its equality case. Pac. J. Math. 237, 87–95 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Guadalupe, I., Rodríguez, L.: Normal curvature of surfaces in space forms. Pac. J. Math. 106, 95–103 (1983)zbMATHCrossRefGoogle Scholar
  11. 11.
    Lin, L.M., Guo, Z.: Classification of hypersurfaces with two distinct principal curvatures and closed Möbius form in \({\mathbb{S}}^{m+1}\). Sci. China Math. 55, 1463–1478 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, H.Z., Wang, C.P.: Surfaces with vanishing Möbius form in \({\mathbb{S}^n}\). Acta Math. Sin. (Engl. Ser.) 19, 671–678 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, T.Z., Ma, X., Wang, C.P.: Deformation of hypersurfaces preserving the Möbius metric and a reduction theorem. Adv. Math. 256, 156–205 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, T.Z., Ma, X., Wang, C.P.: Wintgen ideal submanifolds with a low-dimensional integrable distribution. Front. Math. China 10, 111–136 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, T.Z., Ma, X., Wang, C.P., Xie, Z.X.: Wintgen ideal submanifolds of codimension two, complex curves, and Möbius geometry. Tohoku Math. J.(2015). (to appear)Google Scholar
  16. 16.
    Li, T.Z., Ma, X., Wang, C.P., Xie, Z.X.: The Wintgen ideal submanifolds reducible to minimal examples. (preprint)Google Scholar
  17. 17.
    Liu, H.L., Wang, C.P., Zhao, G.S.: Möbius isotropic submanifolds in \(S^n\). Tohoku Math. J. 53, 553–569 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lu, Z.Q.: Normal scalar curvature conjecture and its applications. J. Funct. Anal. 261, 1284–1308 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Ma, X., Xie, Z.X.: The Möbius geometry of Wintgen ideal submanifolds. In: ICM 2014 Satellite Conference on Real and Complex Submanifolds. Springer Proc. Math. and Stats., vol. 106, pp. 411–425 (2014)Google Scholar
  20. 20.
    Wang, C.P.: Möbius geometry of submanifolds in \(S^n\). Manuscr. Math. 96, 517–534 (1998)zbMATHCrossRefGoogle Scholar
  21. 21.
    Wintgen, P.: Sur l’inégalité de Chen–Willmore. C. R. Acad. Sci. Paris 288, 993–995 (1979)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Xie, Z.X., Li, T.Z., Ma, X., Wang, C.P.: Möbius geometry of three dimensional Wintgen ideal submanifolds in \({\mathbb{S}}^5\). Sci. China Math. 57, 1203–1220 (2014)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of MathematicsChina University of Mining and Technology (Beijing)BeijingPeople’s Republic of China

Personalised recommendations