Annals of Global Analysis and Geometry

, Volume 48, Issue 4, pp 295–303 | Cite as

Regularization via Cheeger deformations

  • Catherine Searle
  • Pedro SolórzanoEmail author
  • Frederick Wilhelm


We show that Cheeger deformations regularize G-invariant metrics in a very strong sense.


Cheeger deformation Riemannian submersion Normal homogenous Totally geodesic fibers 

Mathematics Subject Classification




We are grateful to Peter Petersen, Wilderich Tuschmann, and Burkhard Wilking for stimulating conversations on this topic.


  1. 1.
    Cheeger, J.: Some examples of manifolds of non-negative curvature. J. Differ. Geom. 8, 623–628 (1973)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16, 413–443 (1967)Google Scholar
  3. 3.
    Hirsch, M.: Differential topology. In: Graduate Texts in Mathematics. Springer, Berlin (1994)Google Scholar
  4. 4.
    Müter, P.: Krümmungserhöhende Deformationen mittels Gruppenaktionen. Ph.D. thesis, University of Münster (1987)Google Scholar
  5. 5.
    O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Petersen, P., Wilhelm, F.: Examples of Riemannian manifolds with positive curvature almost everywhere. Geom. Topol. 3, 331–367 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Searle, C., Wilhelm, F.: How to lift positive Ricci curvature. Geom Topol 19, 1409–1475 (2015)Google Scholar
  8. 8.
    Schwachhöfer, L., Tapp, K.: Homogeneous metrics with nonnegative curvature. J. Geom. Anal. 19(4), 929–943 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ziller, W.: On P. Müter’s Ph.D. Thesis. (Preprint)

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Mathematics, Statistics, and Physics DepartmentWichita State UniversityWichitaUSA
  2. 2.Departamento de MatemáticaUniversidade Federal de Santa CatarinaFlorianópolisBrasil
  3. 3.Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations