Annals of Global Analysis and Geometry

, Volume 48, Issue 3, pp 233–254 | Cite as

A connection between flat fronts in hyperbolic space and minimal surfaces in Euclidean space

  • Antonio MartínezEmail author
  • Pedro Roitman
  • Keti Tenenblat


A geometric construction is provided that associates to a given flat front in \(\mathbb {H}^3\) a pair of minimal surfaces in \(\mathbb {R}^3\) which are related by a Ribaucour transformation. This construction is generalized associating to a given frontal in \(\mathbb {H}^3\), a pair of frontals in \(\mathbb {R}^3\) that are envelopes of a smooth congruence of spheres. The theory of Ribaucour transformations for minimal surfaces is reformulated in terms of a complex Riccati ordinary differential equation for a holomorphic function. This enables one to simplify and extend the classical theory, that in principle only works for umbilic free and simply connected surfaces, to surfaces with umbilic points and non-trivial topology. Explicit examples are included.


Minimal surfaces Flat fronts Ribaucour transformations Hyperbolic space 

Mathematics Subject Classification

53A35 53C42 


  1. 1.
    Bianchi, L.: Lezione de Geometria Differenziale, vol. II, Bologna Nicola Zanichelli Editore (1927)Google Scholar
  2. 2.
    Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, B. 3, bearbeitet von G. Thomsen, J. Springer, Berlin (1929)Google Scholar
  3. 3.
    Burstall, F.E., Hertrich-Jeromin, U., Rossman, W.: Lie geometry of flat fronts in hyperbolic space. Comptes Rendus Mathematique 348(11–12), 661–664 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Dajczer, M., Florit, L.A., Tojeiro, R.: The vectorial Ribaucour transformation for submanifolds and applications. Trans. Am. Math. Soc. 359(10), 4977–4997 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Corro, A., Ferreira, W.P., Tenenblat, K.: On Ribaucour transformations for hypersurfaces. Matematica Contemporânea 17, 137–160 (1999)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Corro, A., Ferreira, W.P., Tenenblat, K.: Minimal surfaces obtained by Ribaucour transformations. Geometriae Dedicata 96, 117–150 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Gálvez, J.A., Mira, P.: Embedded isolated singularities of flat surfaces in hyperbolic 3-space. Calc. Var. Partial Differ. Equ. 24, 239–260 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Gálvez, J.A., Martínez, A., Milán, F.: Flat surfaces in hyperbolic 3-space. Math. Ann. 316, 419–435 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Gálvez, J.A., Martínez, A., Milán, F.: Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity. Trans. Am. Math. Soc. 356(9), 3405–3428 (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hille, E.: Ordinary Differential Equations in the Complex Domain. Wiley, New York (1976)zbMATHGoogle Scholar
  11. 11.
    Jorge, L.P., Meeks III, W.H.: The topology of complete minimal surfaces of finite total Gaussian curvature. Topology 22, 203–221 (1983)Google Scholar
  12. 12.
    Kokubu, M., Umehara, M., Yamada, K.: Flat fronts in hyporbolic 3-space. Pac. J. Math. 216(2), 149–175 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities of flat fronts in hyperbolic space. Pac. J. Math. 221(2), 303–351 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kokubu, M., Rossman, W., Umehara, M., Yamada, K.: Flat fronts in hyperbolic 3-space and their caustics. J. Math. Soc. Japan 59(1), 265–299 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Lemes, M.V., Roitmann, P., Tenenblat, K., Tribuzy, R.: Lawson correspondence and Ribaucour transformations. Trans. Am. Math. Soc. 364(12), 6229–6258 (2012)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lemes, M.V., Tenenblat, K.: On Ribaucor transformations and minimal surfaces. Matematica Contemporânea 29, 13–40 (2005)zbMATHMathSciNetGoogle Scholar
  17. 17.
    López, F.J., Martín, F.: Complete minimal surfaces in \(R^3\). Publ. Math. 43(2), 341–449 (1999)zbMATHCrossRefGoogle Scholar
  18. 18.
    Martínez, A., dos Santos, J.P., Tenenblat, K.: Helicoidal flat surfaces in the hyperbolic 3-space. Pac. J. Math. 264, 195–211 (2013)zbMATHCrossRefGoogle Scholar
  19. 19.
    Osserman, R.: A Survey of Minimal Surfaces. Van Nostrand Reinhold Company, New York (1969)Google Scholar
  20. 20.
    Roitman, P.: Flat surfaces in hyperbolic 3-space as normal surfaces to a congruence of geodesics. Tohoku Math. J. (2) 59(1), 21–37 (2007)Google Scholar
  21. 21.
    Saji, K., Umehara, M., Yamada, K.: The geometry of fronts. Ann. Math. 169, 491–529 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Saji, K., Umehara, M., Yamada, K.: A2-singularities of hypersurfaces with non-negative sectional curvature in Euclidean space. Kodai Math. J. 34(3), 390409 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Satoko, M., Umehara, M.: Flat surfaces with singularities in Euclidean 3-space. J. Differ. Geom. 82(2), 279316 (2009)Google Scholar
  24. 24.
    Weber, M.: Classical Minimal Surfaces in Euclidean Space by Examples in Global Theory of Minimal Surfaces: Proceedings of the Clay Mathematics Institute 2001 Summer School, Mathematical Sciences Research Institute, Berkeley, California, June 25 July 27, 2001. American Mathematical Soc., USA (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Antonio Martínez
    • 1
    Email author
  • Pedro Roitman
    • 2
  • Keti Tenenblat
    • 2
  1. 1.Departamento de Geometría y TopologíaUniversidad de GranadaGranadaSpain
  2. 2.Departamento de MatemáticaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations