Skip to main content
Log in

The spectral theory of the Yano rough Laplacian with some of its applications

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

J.H. Sampson has defined the Laplacian \(\triangle _\mathrm{sym}\) acting on the space of symmetric covariant tensors on Riemannian manifolds. This operator is an analogue of the well-known Hodge–de Rham Laplacian \(\triangle \) which acts on the space of skew-symmetric covariant tensors on Riemannian manifolds. In the present paper, we perform properties analysis of Sampson operator which acts on one-forms. We show that the Sampson operator is the Yano rough Laplacian. We also find the biggest lower bounds of spectra of the Yano and Hodge–de Rham operators and obtain estimates of their multiplicities for the space of one-forms on compact Riemannian manifolds with negative and positive Ricci curvatures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agricola, L., Friedrich, T., Global analysis. In: Differential Forms in Analysis, Geometry and Physics. American Mathematical Society, Providence (2002)

  2. Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  3. Boucetta, M.: Spectra and symmetric eigentensors of the Lichnerowicz Laplacian on \(S^n\). Osaka J. Math. 46(1), 235–254 (2009)

    MATH  MathSciNet  Google Scholar 

  4. Boucetta, M.: Spectre du Laplacien de Lichnerowicz sur les projectifs complexes. C. R. Acad. Sci. Paris Sér. I Math. 333, 571–576 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  6. Dodziuk, J.: \(L^2\) harmonic forms on rotationally symmetric Riemannian manifolds. Proc. Am. Math. Soc. 77(3), 395–400 (1979)

    MATH  MathSciNet  Google Scholar 

  7. Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1949)

    MATH  Google Scholar 

  8. Erkekoğlu, F., García-Río, E., Kupeli, D.N., Ünal, B.: Characterizing specific Riemannian manifolds by differential equations. Acta. Appl. Math. 76(2), 195–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Erkekoğlu, F., Kupeli, D.N., Ünal, B.: Some results related to the Laplacian on vector fields. Publ. Math. Debr. 69(1–2), 137–154 (2006)

    MATH  Google Scholar 

  10. Gallot, S.: Sur les variétés à operateur de courbure positif qui ont même première valeur proper du \(p\)-spectre que la sphére. C. R. Acad. Sci. Paris 227, A457–A459 (1973)

    MathSciNet  Google Scholar 

  11. Garcia-Río, E., Kupeli, D.N., Ünal, B.: On differential equation characterizing Euclidean spheres. J. Differ. Equ. 194, 287–299 (2003)

    Article  MATH  Google Scholar 

  12. Mikeš, J., Stepanova, E.: A five-dimensional Riemannian manifold with an irreducible \(SO(3)\)-structure as a model of abstract statistical manifold. Ann. Global Anal. Geom. 45(2), 111–128 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Perrone, D.: On the minimal eigenvalue of the Laplacian operator for \(p\)-forms in conformally flat Riemannian manifolds. Proc. Am. Math. Soc. 86(1), 103–108 (1982)

    MATH  MathSciNet  Google Scholar 

  14. Sampson, J.H.: On a theorem of Chern. Trans. AMS 177, 141–153 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Smith, R.T.: The second variation formula for harmonic mappings. Proc. Am. Math. Soc. 47, 229–236 (1975)

    Article  MATH  Google Scholar 

  16. Stepanov, S.E., Shandra, I.G.: Geometry of infinitesimal harmonic transformations. Ann. Global Anal. Geom. 24(3), 291–299 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stepanov, S., Mikeš, J.: Betti and Tachibana numbers of compact Riemannian manifolds. Differ. Geom. Appl. 31(4), 486–495 (2013)

    Article  MATH  Google Scholar 

  18. Stepanov, S.E., Tsyganok, I.I., Mikeš, J.: From infinitesimal harmonic transformations to Ricci solitons. Math. Bohem. 138(1), 25–36 (2013)

    MATH  MathSciNet  Google Scholar 

  19. Sumitomo, T., Tandai, K.: Killing tensor fields on the standard sphere and spectra of \(SO(n + 1)/(SO(n - 1)\times SO(2))\) and \(O(n +1)/O(n - 1)\times O(2)\). Osaka J. Math. 20(1), 51–78 (1983)

    MATH  MathSciNet  Google Scholar 

  20. Takahashi, J.: On the gap between the first eigenvalues of the Laplacian on functions and 1-forms. J. Math. Soc. Jpn. 53(2), 307–320 (2001)

    Article  MATH  Google Scholar 

  21. Tachibana, Sh: On Killing tensors in Riemannian manifolds of positive curvature operator. Tohoku Math. J. 28, 177–184 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wood, J.C.: Infinitesimal deformations of harmonic maps and morphisms. Int. J. Geom. Methods Mod. Phys. 3(5–6), 933–956 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970)

    MATH  Google Scholar 

  24. Yano, K., Nagano, T.: On geodesic vector fields in a compact orientable Riemannian space. Comment. Math. Helv. 35, 55–64 (1961)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey E. Stepanov.

Additional information

The paper was supported by Grant IGA-PrF-2015-010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, S.E., Mikeš, J. The spectral theory of the Yano rough Laplacian with some of its applications. Ann Glob Anal Geom 48, 37–46 (2015). https://doi.org/10.1007/s10455-015-9455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-015-9455-3

Keywords

Mathematics Subject Classification

Navigation