Skip to main content
Log in

Harmonic maps of finite uniton number and their canonical elements

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We classify all harmonic maps with finite uniton number from a Riemann surface into an arbitrary compact simple Lie group \(G\), whether \(G\) has trivial centre or not, in terms of certain pieces of the Bruhat decomposition of the group \(\Omega _\mathrm {alg}{G}\) of algebraic loops in \(G\) and corresponding canonical elements. This will allow us to give estimations for the minimal uniton number of the corresponding harmonic maps with respect to different representations and to make more explicit the relation between previous work by different authors on harmonic two-spheres in classical compact Lie groups and their inner symmetric spaces and the Morse theoretic approach to the study of such harmonic two-spheres introduced by Burstall and Guest. As an application, we will also give some explicit descriptions of harmonic spheres in low-dimensional spin groups making use of spinor representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aithal, A.R.: Harmonic maps from \({\rm S}^2\) to \({\mathbb{H}}{\rm P}^{n-1}\). Osaka J. Math. 23, 255–270 (1986)

    MATH  MathSciNet  Google Scholar 

  2. Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39(2), 145–205 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bahy-El-Dien, A., Wood, J.C.: The explicit construction of all harmonic two-spheres in \({\rm G}_2({\mathbb{R}}^{n})\). J. Reine u. Angew. Math. 398, 36–66 (1989)

    MATH  MathSciNet  Google Scholar 

  4. Bahy-El-Dien, A., Wood, J.C.: The explicit construction of all harmonic two-spheres in quaternionic projective spaces. Proc. Lond. Math. Soc. 62, 202–224 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burstall, F.E., Guest, M.A.: Harmonic two-spheres in compact symmetric spaces, revisited. Math. Ann. 309(4), 541–572 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burstall, F.E., Rawnsley, J.H.: Twistor theory for Riemannian symmetric spaces with applications to harmonic maps of Riemann surfaces, lecture notes in mathematics, vol. 1424, Springer, Berlin (1990)

  7. Borel, A., Siebenthal, J.: Les sous-groupes férmes de rang maximum des groupes de Lie clos. Comm. Math. Hel. 23, 200–221 (1949)

    Article  MATH  Google Scholar 

  8. Bryant, R.L.: Remarks on spinors in low dimensions. [Online]. http://www.math.duke.edu/bryant/Spinors

  9. Correia, N., Pacheco, R.: Harmonic maps of finite uniton number into \(G_2\). Math. Z. 271(1–2), 13–32 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Correia, N., Pacheco, R.: Extended solutions of the Harmonic map equation in the special unitary group. Q. J. Math. 65(2), 637–654 (2014). doi:10.1093/qmath/hat018

  11. Correia, N., Pacheco, R.: Harmonic spheres and tori in the Cayley plane, in preparation

  12. Eells, J., Wood, J.C.: Harmonic maps from surfaces to complex projective spaces. Adv. Math. 49(3), 217–263 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eschenburg, J.-H., Mare, A.L., Quast, P.: Pluriharmonic maps into outer symmetric spaces and a subdivision of Weyl chambers. Bull. Lond. Math. Soc. 42(6), 1121–1133 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fulton, W., Harris, J.: Representation theory, graduate texts in mathematics, vol. 129, Springer, New York. A first course, readings in Mathematics (1991)

  15. Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47–152 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pacheco, R.: Harmonic two-spheres in the symplectic group \({\rm Sp}(n)\). Int. J. Math. 17(3), 295–311 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pressley, A., Segal, G.: Loop groups, oxford mathematical monographs. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1986)

  18. Segal, G.: Loop groups and harmonic maps, advances in homotopy theory. Cortona: London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge 1989, pp. 153–164 (1988)

  19. Svensson, M., Wood, J.C.: Filtrations, factorizations and explicit formulae for harmonic maps. Comm. Math. Phys. 310(1), 99–134 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Svensson, M., Wood, J.C.: Harmonic maps into the exceptional symmetric space \(G_2/SO(4)\) (2013). arXiv:1303.7176

  21. Uhlenbeck, K.: Harmonic maps into Lie groups: classical solutions of the chiral model. J. Differ. Geom. 30(1), 1–50 (1989)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The second author would like to thank John Wood for helpful conversations. He also benefited from clarifying correspondence with Francis Burstall. This work was partially supported by FCT - Portugal through CMUBI (project PEst-OE/MAT/UI0212/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Pacheco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, N., Pacheco, R. Harmonic maps of finite uniton number and their canonical elements. Ann Glob Anal Geom 47, 335–358 (2015). https://doi.org/10.1007/s10455-014-9448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9448-7

Keywords

Mathematics Subject Classification

Navigation