Skip to main content
Log in

Classification of Möbius homogenous surfaces in \({\mathbb {S}}^4\)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A surface \(M^2\) in \(\mathbb {S}^4\) is called Möbius homogeneous if for any two points \(p,q \in M^2\) there exists a Moebius transformation which takes \(p\) to \(q\) and keeps \(M^2\) invariant. In this paper we give a complete classification of the Möbius homogenous surfaces in \(\mathbb {S}^4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burstall, F., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal geometry of surfaces in the 4-sphere and Quaternions. In: Lect. Notes Math., vol. 1772. Springer, Berlin (2002)

  2. Cheng, Q., Shu, S.: A möbius characterization of submanifolds. J. Math. Soc. Jpn. 58, 904–925 (2006)

    MathSciNet  Google Scholar 

  3. Fan, L., Lü, Y., Wang, C., Zhong, J.: Geodesics on the moduli space of oriented circles in \(\mathbb{s}^{3}\). Results Math. 59(3–4), 471–484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, Z., Li, H., Wang, C.: The moebius characterizations of willmore tori and veronese submanifolds in the unit sphere. Pac. J. Math. 241(2), 227–242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, Z., Li, H., Wang, C.: The second variational formula for willmore submanifolds. Results Math. 40, 205–225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, Z., Li, H.: Submanifolds with constant Moebius scalar curvaturein \(S^n\). Manuscr. Math. 111, 287–302 (2003)

  7. Li, H., Wang, C., Wu, F.: Surfaces with vanishing moebius form in \(s^n\). Acta Math. Sinica. 19, 671–678 (2003)

  8. Li, T., Ma, X., Wang, C.: Möbius homogenous hypersurfaces with two distinct principle curvature in \(\mathbb{S}^{n+1}\). Arkiv for Matematik (2013, to appear). doi:10.1007/s11512-011-0161-5

  9. Liu, H., Wang, C., Zhao, G.: Möbius isotropic submanifolds in \(\mathbb{ s}^n\). Tohoku Math. J. 53, 553–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, X., Wang, C.: Willmore surfaces of constant möbius curvature. Ann. Global Anal. Geom. 32(3), 297–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sulanke, R.: Möbius geometry V: homogeneous surfaces in the Möbius space \(\mathbb{S}^3\). In: Topics in Differential Geometry (Debrecen), vol. 2, pp. 1141C1154 (1984). Colloq. Math. Soc. János Bolyai, vol. 46. North-Holland, Amsterdam (1988)

  12. Wang, C.: Möbius geometry of submanifolds in \(\mathbb{s}^n\). Manuscr. Math. 96, 517–534 (1998)

    Article  MATH  Google Scholar 

  13. Wang, C.: Möbius geometry for hypersurfaces in \(\mathbb{r}^4\). Nagoya Math. J. 139, 1–20 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is funded by the Project 11171004 and 11331002 of National Natural Science Foundation of China. We thank Professor Haizhong Li and Professor Faen Wu for the helpful discussions and valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxiao Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xie, Z. Classification of Möbius homogenous surfaces in \({\mathbb {S}}^4\) . Ann Glob Anal Geom 46, 241–257 (2014). https://doi.org/10.1007/s10455-014-9421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9421-5

Keywords

Mathematics Subject Classification (2000)

Navigation