Skip to main content
Log in

Hodge theory for elliptic complexes over unital \(C^*\)-algebras

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

For a unital \(C^{*}\)-algebra \(A\), we prove that the cohomology groups of \(A\)-elliptic complexes of pseudodifferential operators in finitely generated projective \(A\)-Hilbert bundles over compact manifolds are finitely generated \(A\)-modules and Banach spaces provided the images of certain extensions of the so-called associated Laplacians are closed. We also prove that under this condition, the cohomology groups are isomorphic to the kernels of the associated Laplacians. This establishes a Hodge theory for these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartholdi, L., Schick, T., Smale, N., Smale, S.: Hodge theory on metric spaces. Found. Comput. Math. 12(1), 1–48 (2012)

    Google Scholar 

  2. Fedosov, B.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40(2), 213–238 (1994)

    Google Scholar 

  3. Fomenko, A., Mishchenko, A.: The index of elliptic operators over \(C^*\)-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 43(4), 831–859 (1979). 967

    MATH  MathSciNet  Google Scholar 

  4. Habermann, K.: Basic properties of symplectic Dirac operators. Commun. Math. Phys. 184(3), 629–652 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kostant, B.: Symplectic spinors. Symposia Mathematica, vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), pp. 139–152. Academic Press, London (1974)

  6. Lance, C.: Hilbert \(C^*\)-modules. A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge (1995)

  7. Manuilov, V., Troitsky, E.: Hilbert \(C^*\)-modules. Translated from the 2001 Russian original by the authors. Translations of Mathematical Monographs, vol. 226. American Mathematical Society, Providence (2005)

  8. Mingo, J.: \(K\)-theory and multipliers of stable \(C^\ast \)-algebras. Trans. Am. Math. Soc. 299, 397–411 (1987)

    MATH  MathSciNet  Google Scholar 

  9. Paschke, W.: Inner product modules over \(B^*\)-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)

    MATH  MathSciNet  Google Scholar 

  10. Pavlov, A.: The generalized Chern character and Lefschetz numbers in \(W\)-modules. Acta Appl. Math. 68(1–3), 137–157 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schick, T.: \(L^2\)-index theorems, \(KK\)-theory, and connections. N Y J. Math. 11, 387–443 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Shubin, M.: \(L^2\) Riemann–Roch theorem for elliptic operators. Geom. Funct. Anal. 5(2), 482–527 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Smale, N., Smale, S.: Abstract and classical Hodge–deRham theory. Anal. Appl. (Singap.) 10(1), 91–111 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Solovyov, Y., Troitsky, E.: \(C^*\)-algebras and elliptic operators in differential topology. Translations of Mathematical Monographs, vol. 192. American Mathematical Society, Providence (2001)

  15. Troitsky, E.: The index of equivariant elliptic operators over \(C^*\)-algebras. Ann. Global Anal. Geom. 5(1), 3–22 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Troitsky, E.: Lefschetz numbers of \(C^*\)-complexes, Lecture Notes in Mathematics, vol. 1474. Springer, Berlin, pp. 193–206 (1991)

  17. Troitsky, E., Frank, M.: Lefschetz numbers and the geometry of operators in \(W^*\)-modules. Funct. Anal. Appl. 30(4), 257–266 (1996)

    Article  MathSciNet  Google Scholar 

  18. Wegge-Olsen, N.: \(K\)-theory and \(C^*\)-algebras. A friendly approach. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1993)

    Google Scholar 

  19. Wells, R.: Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics, vol. 65. Springer, New York (2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svatopluk Krýsl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krýsl, S. Hodge theory for elliptic complexes over unital \(C^*\)-algebras. Ann Glob Anal Geom 45, 197–210 (2014). https://doi.org/10.1007/s10455-013-9394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-013-9394-9

Keywords

Mathematics Subject Classification (2000)

Navigation