Skip to main content
Log in

Complete self-shrinkers confined into some regions of the space

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study geometric properties of complete non-compact bounded self-shrinkers and obtain natural restrictions that force these hypersurfaces to be compact. Furthermore, we observe that, to a certain extent, complete self-shrinkers intersect transversally a hyperplane through the origin. When such an intersection is compact, we deduce spectral information on the natural drifted Laplacian associated to the self-shrinker. These results go in the direction of verifying the validity of a conjecture by H.D. Cao concerning the polynomial volume growth of complete self-shrinkers. A finite strong maximum principle in case the self-shrinker is confined into a cylindrical product is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.: The compactification of a minimal submanifold by its Gauss map. Preprint. http://www.math.sunysb.edu/anderson/compactif.pdf

  2. Barta, J.: Sur la vibration fundamentale d’une membrane. C. R. Acad. Sci. 204, 472–473 (1937)

    MATH  Google Scholar 

  3. Bessa, G.P., Jorge, L., Montenegro, F.: Complete submanifolds of \({\mathbb{R}}^n\) with finite topology. Comm. Anal. Geom. 15, 725–732 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bessa, G.P., Pigola, S., Setti, A.G.: Spectral and stochastic properties of the \(f\)-Laplacian, solutions of PDE’s at infinity and geometric applications. Rev. Mat. Iberoam. 29, 579–610 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carron, G.: Une suite exacte en \(L^2\)-cohomologie. Duke Math. J. 95, 343–372 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao, H.-D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc. Var. Partial Differ. Equ. 46(3–4), 878–889 (2013)

    MathSciNet  Google Scholar 

  7. Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115. Academic Press Inc., Orlando (1984)

  8. Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141(2), 687–696 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Colding, T., Minicozzi, W.: Generic mean curvature flow I; generic singularities. Ann. Math. 175, 755–833 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ding, Q., Xin, Y.L.: Volume growth, eigenvalue and compactness for self-shrinkers. Preprint. http://arxiv.org/abs/1101.1411v1.pdf

  11. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (NS) 36, 135–249 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    MATH  MathSciNet  Google Scholar 

  13. Lawson Jr, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)

    Article  MATH  Google Scholar 

  14. Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271, A650–A653 (1970)

  15. Michael, J.H., Simon, L.M.: Sobolev and mean-value inequalities on generalized submanifolds of \({\mathbb{R}}^{n}\). Commun. Pure Appl. Math 26, 361–379 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pigola, S., Veronelli, G.: Uniform decay estimates for finite-energy solutions of semi-linear elliptic inequalities and geometric applications. Differ. Geom. Appl. 29, 35–54 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822) (2005)

  18. Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268, 777–790 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.G.: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10, 757–799 (2011)

    Google Scholar 

  20. Pigola, S., Setti, A.G.: The Feller property of Riemannian manifolds. J. Funct. Anal. 262, 2481–2515 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rimoldi, M.: A classification theorem for self-shrinkers. Proc. Am. Math. Soc. (to appear)

  22. Sjögren, P.: Ornstein–Uhlenbeck theory in finite dimension. Lecture Notes, University of Gothenburg. http://www.math.chalmers.se/donnerda/OU.pdf

  23. Sormani, C.: On loops representing elements of the fundamental group of a complete manifold with nonnegative Ricci curvature. Indiana Univ. Math. J. 50, 1867–1883 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)

    MATH  MathSciNet  Google Scholar 

  25. Yang, N.: A note on nonnegative Bakry–Émery Ricci curvature. Arch. Math. (Basel) 93, 491–496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pacelli Bessa, Debora Impera and Giona Veronelli for their interest in this work and for several suggestions that have improved the presentation of the paper. Further suggestions concerning the presentation are due to the anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Rimoldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pigola, S., Rimoldi, M. Complete self-shrinkers confined into some regions of the space. Ann Glob Anal Geom 45, 47–65 (2014). https://doi.org/10.1007/s10455-013-9387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-013-9387-8

Keywords

Mathematics Subject Classification (1991)

Navigation