Skip to main content
Log in

A zoo of diffeomorphism groups on \(\mathbb{R }^{n}\)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider the groups \({\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)\), \({\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)\), and \({\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)\) of smooth diffeomorphisms on \(\mathbb{R }^n\) which differ from the identity by a function which is in either \(\mathcal{B }\) (bounded in all derivatives), \(H^\infty = \bigcap _{k\ge 0}H^k\), or \(\mathcal{S }\) (rapidly decreasing). We show that all these groups are smooth regular Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group. Ann. Global Anal. Geom. (2012). doi:10.1007/s10455-012-9353-x

  2. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation. Ann. Global Anal. Geom. 41(4), 461–472 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, M., Bruveris, M., Peter W.M.: Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group II (2013). doi:10.1007/s10455-013-9370-4

  4. Bauer, M, Bruveris, M., Peter W.M.: The homogeneous Sobolev metric of order one on diffeomorphism groups on the real line. arXiv:1209.2836 (2012)

  5. Faà di Bruno, C.F.: Note sur une nouvelle formule du calcul différentielle. Quart. J. Math. 1, 359–360 (1855)

    Google Scholar 

  6. Frölicher A., Kriegl A.: Linear spaces and differentiation theory. Pure and Applied Mathematics (New York). Wiley, Chichester (1988)

  7. Gerald A.G: Lectures on diffeomorphism groups in quantum physics. In: Contemporary problems in mathematical physics, pp 3–93. World Science Publication, Hackensack (2004)

  8. Kriegl, A., Michor, P.W.: The convenient setting of global analysis, volume 53 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997)

    Book  Google Scholar 

  9. Kriegl, A., Michor, P.W.: Regular infinite-dimensional Lie groups. J. Lie Theory 7(1), 61–99 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Micheli, M., Michor, P.W., Mumford, D.: Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izvestiya: Mathematics, to appear (2012)

  11. Michor, P.W.: A convenient setting for differential geometry and global analysis. Cahiers Topologie Géom. Différentielle 25(1), 63–109 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Michor, P.W.: A convenient setting for differential geometry and global analysis. II. Cahiers Topologie Géom. Différentielle 25(2), 113–178 (1984)

    MathSciNet  Google Scholar 

  13. Michor, P.W.: Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach. In: Phase space analysis of partial differential equations, vol. 69 of Programme. Nonlinear Differential Equations Appl., pp. 133–215. Birkhäuser Boston, Boston (2006)

  14. Michor, P.W.: Topics in differential geometry, volume 93 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2008)

    Google Scholar 

  15. Michor, P.W.: Manifolds of differentiable mappings. Shiva Mathematics Series 3, Orpington (1980)

  16. Michor, P.W.: Manifolds of smooth maps II: The Lie group of diffeomorphisms of a non compact smooth manifold. Cahiers Topologie Géom. Différentielle 21, 63–86 (1980)

    MathSciNet  MATH  Google Scholar 

  17. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: Relativity, groups and topology, II (Les Houches, 1983), pp. 1007–1057. North-Holland, Amsterdam (1984)

  18. Mumford, D., Michor, P. W.: On Euler’s equation and ‘EPDiff’. arXiv:1209.6576 (2012)

  19. Omori, H., Maeda, Y., Yoshioka, A.: On regular Fréchet Lie groups IV. Definitions and fundamental theorems. Tokyo J. Math. 5, 365–398 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Omori, H., Maeda, Y., Yoshioka, A.: On regular Fréchet Lie groups V. Several basic properties. Tokyo J. Math. 6, 39–64 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schwartz, L.: Théorie des distributions. Nouvelle édition, Hermann, Paris (1966)

  22. Vogt, D.: Sequence space representations of spaces of test functions and distributions. In: Functional analysis, holomorphy, and approximation theory (Rio de Janeiro, 1979), volume 83 of Lecture Notes in Pure and Applied Mathematics, pp. 405–443. Dekker, New York (1983)

  23. Walter, B.: Weighted diffeomorphism groups of Banach spaces and weighted mapping groups. Diss. Math. (Rozprawy Mat.) 484, 128 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Michor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michor, P.W., Mumford, D. A zoo of diffeomorphism groups on \(\mathbb{R }^{n}\) . Ann Glob Anal Geom 44, 529–540 (2013). https://doi.org/10.1007/s10455-013-9380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-013-9380-2

Keywords

Mathematics Subject Classification (1991)

Navigation