Advertisement

Annals of Global Analysis and Geometry

, Volume 43, Issue 2, pp 153–160 | Cite as

A generalization of almost-Schur lemma for closed Riemannian manifolds

  • Xu ChengEmail author
Article

Abstract

De Lellis and Topping proved an almost-Schur lemma for the closed manifolds with non-negative Ricci curvature. In this article, we study general closed manifolds and obtain a generalization of their theorem.

Keywords

Einstein manifold Schur lemma Eigenvalue of Laplace operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng X., Zhou D.: Rigidity of closed totally umbilical hypersurfaces in space forms (preprint) (2012)Google Scholar
  2. 2.
    Ge Y., Wang G.: A new conformal invariant on 3-dimensional manifolds. arXiv:1103.3838 (2011)Google Scholar
  3. 3.
    Ge Y., Wang G.: An almost Schur theorem on 4-dimensional manifolds. Proc. Amer. Math. Soc. 140, 1041–1044 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ge Y., Wang G., Xia C.: On problems related to an inequality of De Lellis and Topping (preprint) (2011)Google Scholar
  5. 5.
    De Lellis C., Müller S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Differential Geom. 69, 75–110 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    De Lellis C., Topping P.: Almost-Schur lemma. Calc. Var. Partial Differential Equations 43 347–354 (2012). arXiv:1003.3527v2 [math.DG] 7 May 2011Google Scholar
  7. 7.
    Kalka M., Mann E., Yang D., Zinger A.: the exponential decay rate of the lower bound for the first Eigenvalue of compact manifolds. Internat. J. Math. (IJM) 8(3), 345–355 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Li P., Yau S.T.: Eigenvalues of a compact Riemannian manifold. AMS Proc. Symp. Pure Math. 36, 205–239 (1980)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Perez D.: On nearly umbilical hypersurfaces. Thesis (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Insitituto de MatemáticaUniversidade Federal Fluminense—UFFNiteróiBrazil

Personalised recommendations