Annals of Global Analysis and Geometry

, Volume 43, Issue 2, pp 123–141 | Cite as

Lee form and special warped-like product manifolds with locally conformally parallel Spin(7) structure

  • Selman UğuzEmail author


We study the cases of the Lee form on special warped-like product manifolds M with locally conformally parallel Spin(7) structure to determine the nature of the fibers. Using fiber-base decomposition, we prove that the connection on M is determined by the Bonan form and Lee one-form. Assuming that the fibers are complete, connected and simply connected, and choosing some classes of Lee form on M, we prove a main result that the fibers (or at least one of them) are isometric to S 3 with constant curvature k > 0 in the class of (3 + 3 + 2) warped-like product metrics admitting a specific locally conformally parallel Spin(7) structure. We believe that the paper could help in producing new examples of (locally conformally) parallel Spin(7) structures.


Lee form Holonomy Locally conformally parallel Spin(7) manifold Warped product Multiply-warped product (3 + 3 + 2) Warped-like product 

Mathematics Subject Classification

53C25 53C29 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kobayashi S.: Foundations of Differential Geometry, vol. I. Interscience, Oxford (1969)Google Scholar
  2. 2.
    Agricola I.: The Srni lectures on non-integrable geometries with torsion, Arch. Math. 42, 5–84 (2006) math.DG/0606705MathSciNetzbMATHGoogle Scholar
  3. 3.
    Schwachhöfer L.J.: Riemannian, symplectic and weak holonomy. Ann. Global Anal. Geom. 18, 291–308 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Berger M.: Sur les groupes d’holonomie des variétés à conexion affine et des variétés Riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Alekseevskii D.: Riemannian spaces with unusual holonomy groups. Funct. Anal. Appl. 2, 97–105 (1968)CrossRefGoogle Scholar
  6. 6.
    Brown, R. B., Gray, A.: Riemannian manifolds with holonomy group spin(9). In: Kobayashi, S., et al., (ed.) J. Differential Geom. in honor of K. Yano, Kinokuniya, Tokyo, 41-59 (1972)Google Scholar
  7. 7.
    Bryant R.L.: Metrics with exceptional holonomy. Ann. of Math. 126, 525–576 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bryant R.L., Salamon S.M.: On the construction of some complete metrics with exceptional holonomy. Duke Math. J. 58(3), 829–850 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Joyce D.: Compact 8-manifolds with holonomy Spin(7). Invent. Math. 123, 507–552 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Yasui Y., Ootsuka T.: Spin(7) holonomy manifold and superconncetion. Classical Quantum Gravity 18, 807–816 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Flores J.L., S´anchez M.: Geodesic connectedness of multiwarped spacetimes. J. Differential Equations 186, 1–30 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bonan E.: Sur les variétés Riemanniennes à groupe d’holonomie G 2 ou Spin(7). C.R. Acad. Sci. Paris 262, 127–129 (1966)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Joyce D.: Compact Manifolds with Special Holonomy. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  14. 14.
    O’Neil B.: Semi Riemannian Geometry. Academic Press Inc., London (1983)Google Scholar
  15. 15.
    Salamon S.M.: Riemannian geometry and holonomy groups. Pitman Research Notes Math., Longman-Oxford (1989)zbMATHGoogle Scholar
  16. 16.
    Hempel J.: 3-Manifolds. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  17. 17.
    Uğuz S., Bilge A.H.: (3 + 3 + 2) warped-like product manifolds with Spin(7) holonomy. J. Geom. Phys. 61, 1093–1103 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bilge, A.H., Uğuz, S.: A Generalization of Warped Product Manifolds with Spin(7) Holonomy, Geometry And Physics, XVI International Fall Workshop. AIP Conference Proceedings, vol.1023, pp. 165–171 (2008)Google Scholar
  19. 19.
    Fernandez M.: A classification of Riemannian manifolds with structure group Spin(7). Ann. Mat. Pura Appl. 143, 101–122 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Salur S., Santillan O.: New Spin(7) holonomy metrics admitting G 2 holonomy reductions and M-theory/type-IIA dualities. Phys. Rev. D 79, 086009 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fernandez M.: Riemannian manifolds with structure group G 2. Ann. Mat. Pura Appl. 132, 19–45 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Cabrera F.: On Riemannian manifolds with Spin(7) structure. Publ. Math. Debrecen 46(3–4), 271–283 (1995)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ivanov S.: Connections with torsion, parallel spinors and geometry of Spin(7) manifolds. Math. Res. Lett. 11, 171–186 (2004)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ivanov S., Parton M., Piccinni P.: Locally conformal parallel G 2 and Spin(7) manifolds. Math. Res. Lett. 13, 167–177 (2006) math.DG/0509038MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ivanov S., Martin Cabrera F.: SU(3)-structures on submanifolds of a Spin(7)-manifold. Differential Geom. Appl. 26, 113–132 (2008) math.DG/0510406MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Warner F.W.: Foundations of Differentiable Manifolds and Lie Groups. Scott and Foresman, Glenview (1971)zbMATHGoogle Scholar
  27. 27.
    Cabrera F., Monar M., Swann A.: Classification of G 2-structures. J. London Math. Soc. 53, 407–416 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Friedrich T., Kath I., Moroianu A., Semmelmann U.: On nearly parallel G 2-structures. J. Geom. Phys. 23, 259–286 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Galicki K., Salamon S.: Betti numbers of 3-Sasakian manifolds. Geom. Dedicata 63, 45–68 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Boyer C., Galicki K., Mann B.: Quaternionic reduction and Einstein manifolds. Comm. Anal. Geom. 1, 229–279 (1993)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Friedrich T., Ivanov S.: Killing spinor equations in dimension 7 and geometry of integrable G 2-manifolds. J. Geom. Phys. 48, 1–11 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Bianchi L.: On the spaces of three dimensions that admit a continuous group of movements. Soc. Ital. Sci. Mem. di Mat. 11, 267 (1898)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of MathematicsHarran UniversityŞanliurfaTurkey

Personalised recommendations