Skip to main content
Log in

Kähler–Einstein metrics on strictly pseudoconvex domains

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Extending the results of Cheng and Yau it is shown that a strictly pseudoconvex domain \({M\subset X}\) in a complex manifold carries a complete Kähler–Einstein metric if and only if its canonical bundle is positive, i.e. admits an Hermitian connection with positive curvature. We consider the restricted case in which the CR structure on \({\partial M}\) is normal. In this case M must be a domain in a resolution of the Sasaki cone over \({\partial M}\) . We give a condition on a normal CR manifold which it cannot satisfy if it is a CR infinity of a Kähler–Einstein manifold. We are able to mostly determine those normal CR three-manifolds which can be CR infinities. We give many examples of Kähler–Einstein strictly pseudoconvex manifolds on bundles and resolutions. In particular, the tubular neighborhood of the zero section of every negative holomorphic vector bundle on a compact complex manifold whose total space satisfies c 1 < 0 admits a complete Kähler–Einstein metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baily W.L.: On the imbedding of V-manifolds in projective space. Am. J. Math. 79, 403–430 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barth W.P., Hulek K., Peters C.A.M., Vande Ven A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), vol. 4. Springer, Berlin (2004)

    Google Scholar 

  3. Belgun F.A.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317(1), 1–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belgun F.A.: Normal CR structures on compact 3-manifolds. Math. Z. 238(3), 441–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belgun F.A.: Normal CR structures on S 3. Math. Z. 244(1), 125–151 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boualem H., Herzlich M.: Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 461–469 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Boutet de Monvel, L.: Intégration des équations de Cauchy–Riemann induites formelles. In: Séminaire Goulaouic-Lions-Schwartz 1974–1975. Équations aux Derivées Partielles Linéaires et Non Linéaires, vol. Exp. No. 9, p. 14. Centre of Mathematics/École Polytechnique, Paris (1975)

  8. Boyer C.P., Galicki K.: Sasakian Geometry. Oxford Mathematical Monographs/Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  9. Boyer C.P., Galicki K., Kollár J.: Einstein metrics on spheres. Ann. Math. (2) 162(1), 557–580 (2005)

    Article  MATH  Google Scholar 

  10. Boyer C.P., Galicki K., Kollár J., Thomas E.: Einstein metrics on exotic spheres in dimensions 7, 11, and 15. Exp. Math. 14(1), 59–64 (2005)

    Article  MATH  Google Scholar 

  11. Boyer C.P., Galicki K., Simanca S.R.: Canonical Sasakian metrics. Comm. Math. Phys. 279(3), 705–733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boyer, C.P., Galicki, K., Santiago, R.S.: The Sasaki cone and extremal Sasakian metrics. In: Riemannian Topology and Geometric Structures on Manifolds, Progress in Mathematics, vol. 271, pp. 263–290. Birkhäuser Boston, Boston (2009)

  13. Burns D.: On rational singularities in dimensions > 2. Math. Ann. 211, 237–244 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Calabi E.: Métriques kählériennes et fibrés holomorphes. Ann. Sci. École Norm. Sup. (4) 12(2), 269–294 (1979)

    MathSciNet  Google Scholar 

  15. Calderbank D.M.J., Singer M.A.: Einstein metrics and complex singularities. Invented Math. 156(2), 405–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng S.Y., Yau S.T.: On the existence of a complete K ähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33(4), 507–544 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colţoiu M.: On the Oka-Grauert principle for 1-convex manifolds. Math. Ann. 310(3), 561–569 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eto S.I., Kazama H., Watanabe K.: On strongly q-pseudoconvex spaces with positive vector bundles. Mem. Fac. Sci. Kyushu Univ. Ser. A 28, 135–146 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fefferman C.L.: Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. (2) 103(2), 395–416 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Futaki, A.: Momentum construction on Ricci-flat Kähler cones Tohoku Math. J. (2) 63(1), 21–40 (2011)

    Google Scholar 

  21. Futaki A., Ono H., Wang G.: Transverse K ähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Differ. Geom. 83(3), 585–635 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Gaunlett, J.P., Martelli, D., Sparks, J., Waldram, D.: Sasaki-Einstein metrics on S 2 ×  S 3. Adv. Theor. Math. Phys. 8(4), 711–734 (2004)

  23. Gauntlett J.P., Martelli D., Sparks J., Waldram D.: A new infinite class of Sasaki–Einstein manifolds. Adv. Theor. Math. Phys. 8(6), 987–1000 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Grauert H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Griffiths P.A.: Hermitian differential geometry and the theory of positive and ample holomorphic vector bundles. J. Math. Mech. 14, 117–140 (1965)

    MathSciNet  MATH  Google Scholar 

  26. Harvey F.R., Lawson H.B. Jr.: On boundaries of complex analytic varieties. I. Ann. Math. (2) 102(2), 223–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Herzlich M.: Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces. Math. Ann. 312(4), 641–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kazama H., Takayama S.: On the \({\partial\overline\partial}\) -equation over pseudoconvex Kähler manifolds. Manuscripta Math. 102(1), 25–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kobayashi, S.: Transformation Groups in Differential Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. Springer-Verlag, New York (1972)

  30. Kohn J.J., Rossi H.: On the extension of holomorphic functions from the boundary of a complex manifold. Ann. Math. (2) 81, 451–472 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. Laufer H.B.: On rational singularities. Am. J. Math. 94, 597–608 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee J.M., Melrose R.: Boundary behaviour of the complex Monge–Ampère equation. Acta Math. 148, 159–192 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mok N., Yau, S.-T.: Completeness of the Kähler–Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. In: The Mathematical Heritage of Henri Poincaré, Part 1 (Bloomington, Ind., 1980). Proceedings of Symposium in Pure Mathematics, vol. 39, pp 41–59. American Mathematical Society, Providence (1983)

  34. Narasimhan R.: Imbedding of holomorphically complete complex spaces. Am. J. Math. 82, 917–934 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nguyen K.A., van der Put M., Top J.: Algebraic subgroups of \({{\rm GL}_2(\mathbb{C})}\). Indag. Math. (N.S.) 19(2), 287–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nirenberg L.: A certain problem of Hans Lewy. Russ. Math. Surv. 29(2), 251–262 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nirenberg, L.: Lectures on Linear Partial Differential Equations. American Mathematical Society, Providence (1973). Expository Lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, Texas, May 22–26, 1972, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 17

  38. Oda, T.: Convex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol. 15. Springer, Berlin (1988). An Introduction to the Theory of Toric Varieties (Translated from the Japanese)

  39. Ornea L., Verbitsky M.: Embeddings of compact Sasakian manifolds. Math. Res. Lett. 14(4), 703–710 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Reid, M.: Young person’s guide to canonical singularities. In: Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, vol. 46, pp. 345–414. American Mathematical Society, Providence (1987)

  41. Schoen R.: On the conformal and CR automorphism groups. Geom. Funct. Anal. 5(2), 464–481 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tian, G., Yau, S.-T.: Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. In: Mathematical aspects of string theory (San Diego, Calif., 1986). Advanced Series in Mathematical Physics, vol. 1, pp. 574–628. World Science Publishing, Singapore (1987)

  43. van Coevering C.: Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Math. Ann. 347(3), 581–611 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. van Coevering C.: Examples of asymptotically conical Ricci-flat kähler manifolds. Math. Z. 268(2), 465–496 (2011)

    Article  Google Scholar 

  45. Van Tan V.: On the embedding problem for 1-convex spaces. Trans. Am. Math. Soc. 256, 185–197 (1979)

    MATH  Google Scholar 

  46. Yau S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig van Coevering.

Additional information

Communicated by C. LeBrun (Stony Brook).

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Coevering, C. Kähler–Einstein metrics on strictly pseudoconvex domains. Ann Glob Anal Geom 42, 287–315 (2012). https://doi.org/10.1007/s10455-012-9313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-012-9313-5

Keywords

Mathematics Subject Classification (1991)

Navigation