Skip to main content
Log in

Quotients of gravitational instantons

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A classification result for Ricci-flat anti-self-dual asymptotically locally Euclidean 4-manifolds is obtained: they are either hyperkähler (one of the gravitational instantons classified by Kronheimer), or they are a cyclic quotient of a Gibbons–Hawking space. The possible quotients are described in terms of the monopole set in \({\mathbb{R}^3}\) , and it is proved that every such quotient is actually Kähler. The fact that the Gibbons–Hawking spaces are the only gravitational instantons to admit isometric quotients is proved by examining the possible fundamental groups at infinity: most can be ruled out by the classification of three-dimensional spherical space form groups, and the rest are excluded by a computation of the Rohklin invariant (in one case) or the eta invariant (in the remaining family of cases) of the corresponding space forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bando S., Kasue A., Nakajima H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97(2), 313–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besse, A.L.: Einstein Manifolds. Classics in Mathematics. Springer-Verlag, Berlin. Reprint of the 1987 edition (2008)

  4. Chen X., Lebrun C., Weber B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21(4), 1137–1168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dedekind R.: Gesammelte mathematische Werke. Bände I. Herausgegeben von Robert Fricke, Emmy Noether und öystein Ore. Chelsea Publishing Co., New York (1968)

    Google Scholar 

  6. Donnelly H.: Eta invariants for G-spaces. Indiana Univ. Math. J. 27(6), 889–918 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eguchi T., Hanson J.A.: Self-dual solutions to Euclidean gravity. Ann. Phys. 120(1), 82–106 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gibbons G.W., Hawking S.W.: Gravitational multi-instantons. Phys. Lett. B. 78(4), 430–432 (1978)

    Article  Google Scholar 

  9. Gibbons G.W., Hawking S.W.: Classification of gravitational instanton symmetries. Commun. Math. Phys. 66(3), 291–310 (1979)

    Article  MathSciNet  Google Scholar 

  10. Hatcher A.: Algebraic topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  11. Hausel T., Hunsicker E., Mazzeo R.: Hodge cohomology of gravitational instantons. Duke Math. J. 122(3), 485–548 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hirzebruch, F.: The signature theorem: reminiscences and recreation. In Prospects in Mathematics (Proceedings of Symposium, 1970). Annals of Mathematical Studies, vol. 70, pp 3–31, Princeton University Press, Princeton, New Jersy (1971)

  13. Hitchin N.J.: Polygons and gravitons. Math. Proc. Camb. Philos. Soc. 85(3), 465–476 (1979)

    Article  MathSciNet  Google Scholar 

  14. Hitchin N.J., Karlhede A., Lindström U., Roček M.: Hyper-Kähler metrics and supersymmetry. Commun. Math. Phys. 108(4), 535–589 (1987)

    Article  MATH  Google Scholar 

  15. Honda, N., Viaclovsky J.: Conformal symmetries of self-dual hyperbolic monopole metrics. ArXiv e-prints, February (2009)

  16. Kronheimer P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Kronheimer P.B.: A Torelli-type theorem for gravitational instantons. J. Differ. Geom. 29(3), 685–697 (1989)

    MathSciNet  MATH  Google Scholar 

  18. McKay, J.: Graphs, singularities, and finite groups. In: The Santa Cruz Conference on Finite Groups (University of California, Santa Cruz, CA, 1979), Proceedings of Symposia in Pure Mathematics, vol. 37, pp. 183–186, American Mathematical Society, Providence, RI (1980)

  19. Nakajima, H.: A convergence theorem for Einstein metrics and the ALE spaces. In: Selected Papers on Number Theory, Algebraic Geometry, and Differential Geometry, vol. 160. American Mathematical Society Translation Series 2, pp. 79–94. American Mathematical Society, Providence, RI (1994)

  20. Neumann, W.D., Raymond, F.: Seifert manifolds, plumbing, μ-invariant and orientation reversing maps. In: Algebraic and Geometric Topology (Proceedings of Symposium, University of California, Santa Barbara, CA, 1977). Lecture Notes in Mathematics, vol. 664, pp. 163–196. Springer, Berl in (1978)

  21. Rademacher H.: Generalization of the reciprocity formula for Dedekind sums. Duke Math. J. 21, 391–397 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rademacher, H., Grosswald, E.: Dedekind Sums. The Carus Mathematical Monographs, No. 16. The Mathematical Association of America, Washington (1972)

  23. Robinson D.J.S.: A Course in the Theory of Groups. Graduate Texts in Mathematics, vol. 80. Springer-Verlag, New York (1982)

    Google Scholar 

  24. Rohlin V.A.: New results in the theory of four-dimensional manifolds. Doklady Akad. Nauk SSSR (N.S.) 84, 221–224 (1952)

    MathSciNet  Google Scholar 

  25. Saveliev N.: Invariants for Homology 3-Spheres. Encyclopaedia of Mathematical Sciences, Low-Dimensional Topology, vol. 140. Springer-Verlag, Berlin (2002)

    Google Scholar 

  26. Wolf J.A.: Spaces of constant curvature, 3rd edn. Publish or Perish Inc., Boston (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan P. Wright.

Additional information

Communicated by C. LeBrun (Stony Brook).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, E.P. Quotients of gravitational instantons. Ann Glob Anal Geom 41, 91–108 (2012). https://doi.org/10.1007/s10455-011-9272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-011-9272-2

Keywords

Mathematics Subject Classification (2000)

Navigation