Advertisement

Annals of Global Analysis and Geometry

, Volume 41, Issue 1, pp 47–59 | Cite as

Orbifold homeomorphism finiteness based on geometric constraints

  • Emily ProctorEmail author
Original Paper

Abstract

We show that any collection of n-dimensional orbifolds with sectional curvature and volume uniformly bounded below, diameter bounded above, and with only isolated singular points contains orbifolds of only finitely many orbifold homeomorphism types. This is a generalization to the orbifold category of a similar result for manifolds proven by Grove, Petersen, and Wu. It follows that any Laplace isospectral collection of orbifolds with sectional curvature uniformly bounded below and having only isolated singular points also contains only finitely many orbifold homeomorphism types. The main steps of the argument are to show that any sequence from the collection has subsequence that converges to an orbifold, and then to show that the homeomorphism between the underlying spaces of the limit orbifold and an orbifold from the subsequence that is guaranteed by Perelman’s stability theorem must preserve orbifold structure.

Keywords

Orbifold Global Riemannian geometry Alexandrov space Spectral geometry 

Mathematics Subject Classification (2000)

Primary 53C23 Secondary 53C20 58J53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adem A., Leida J., Ruan Y.: Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics, 171. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  2. 2.
    Borzellino J.: Orbifolds of maximal diameter. Indiana Univ. Math. J. 42(1), 37–53 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brooks B., Perry P., Petersen P.: Compactness and finiteness for isospectral manifolds. J. Reine Angew. Math. 426, 67–89 (1992)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Burago D., Burago Y., Ivanov S.: A Course in Metric Geometry. Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI (2001)Google Scholar
  5. 5.
    Cheeger J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 92, 61–74 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chiang, Y.-J.: Spectral geometry of V-manifolds and its application to harmonic maps. Differential geometry: Partial differential equations on manifolds, Los Angeles, CA, 1990. Proceedings of Pure Symposia in Pure Mathametics, vol. 54, pp. 93–99. American Mathematical Society, Providence, RI (1993)Google Scholar
  7. 7.
    Dryden E., Gordon C., Greenwald S., Webb D.L.: Asymptotic expansion of the heat kernel for orbifolds. Mich. Math. J. 56, 205–238 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Farsi C.: Orbifold spectral theory. Rocky Mt. J. Math. 31, 215–235 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fukaya K.: Theory of convergence for Riemannian orbifolds. Jpn. J. Math. 12(1), 121–160 (1986)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Greene R.E., Wu H.: Approximation theorems, C convex exhaustions and manifolds of positive curvature. Bull. Am. Math. Soc. 81, 101–104 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gromov M.: Groups of polynomial growth and expanding maps. Inst. Hautes Etud. Sci. Publ. Math. 53, 53–73 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Grove K., Petersen P.: Bounding homotopy types by geometry. Ann. Math. 128, 195–206 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Grove K., Petersen P., Wu J-Y.: Geometric finiteness theorems via contolled topology. Invent Math. 99, 205–213 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kapovitch V.: Regularity of noncollapsing limits of manifolds. Geom. Funct. Anal. 12(1), 121–137 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kapovitch, V.: Perelman’s stability theorem. Surveys in differential geometry. Surv. Differ. Geom, vol. XI, pp. 103–136, 11, International Press, Somerville, MA (2007)Google Scholar
  16. 16.
    Kleiner, B., Lott, J.: Geometrization of three-dimensional orbifolds via Ricci flow, arXiv:1101.3733v2 [math:DG]Google Scholar
  17. 17.
    Perelman, G.: Alexandrov’s spaces with curvatures bounded from below, II. preprint (1991)Google Scholar
  18. 18.
    Perelman G.: Elements of Morse theory on Aleksandrov spaces. St. Petersburg Math. J. 5(1), 205–213 (1994)MathSciNetGoogle Scholar
  19. 19.
    Perelman G., Petrunin A.: Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. St. Petersburg Math. J. 5(1), 215–227 (1994)MathSciNetGoogle Scholar
  20. 20.
    Petersen P.: Riemannian Geometry. Graduate Texts in Mathematics, 171. Springer, New York (1998)Google Scholar
  21. 21.
    Petrunin A.: Applications of quasigeodesics and gradient curves. Comparison geometry (Berkeley, CA, 1993–1994). Math. Sci. Res. Inst. Publ., vol. 30, pp. 203–219. Cambridge University Press, Cambridge (1997)Google Scholar
  22. 22.
    Proctor E., Stanhope E.: Spectral and geometric bounds on 2-orbifold diffeomorphism type. Differ. Geom. Appl. 28(1), 12–18 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Satake I.: On a generalization of the notion of a manifold. Proc. Natl. Acad. Sci. USA 42, 359–363 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Stanhope E.: Spectral bounds on orbifold isotropy. Ann. Global Anal. Geom. 27(4), 355–375 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Thurston, W.: The geometry and topology of 3-manifolds, Lecture Notes. http://www.msri.org/publications/books/gt3m/ (1980)

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsMiddlebury CollegeMiddleburyUSA

Personalised recommendations