Skip to main content
Log in

On the geometry of spaces of oriented geodesics

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

An Erratum to this article was published on 14 June 2016

Abstract

Let M be either a simply connected pseudo-Riemannian space of constant curvature or a rank one Riemannian symmetric space, and consider the space L(M) of oriented geodesics of M. The space L(M) is a smooth homogeneous manifold and in this paper we describe all invariant symplectic structures, (para)complex structures, pseudo-Riemannian metrics and (para)Kähler structure on L(M).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Mathematical Methods of Classical Mechanics GTM. Springer, New York (1989)

    Google Scholar 

  2. Besse A.L.: Manifolds all of whose Geodesics are Closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93. Springer, Berlin (1978)

    Google Scholar 

  3. Ferrand E.: Sur la structure symplectique de l’espace des géodésiques d’un espace de Hadamard. Geom. Dedicata 68, 79–89 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Georgiou N., Guilfoyle B.: On the space of oriented geodesics of hyperbolic 3-space. Rocky Mountain J. Math. 40, 1183–1219 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Godbillon C.: Geometrie differentielle et mechanique analytique. Herman, Paris (1969)

    MATH  Google Scholar 

  6. Gorbatsevich V., Onishchik A.L., Vinberg E.B.: Foundations of Lie Theory and Lie Transformation Groups. Springer-Verlag, Berlin (1997)

    MATH  Google Scholar 

  7. Guilfoyle B., Klingenberg W.: A Neutral Kähler structure on the space of oriented lines. J. London Math. Soc 72, 497–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guilfoyle, B., Klingenberg, W.: Proof of the Carathéodory conjecture by mean curvature flow in the space of oriented affine lines. math.DG/0808.0851 (2008)

  9. Hitchin N.J.: Monopoles and geodesics. Comm. Math. Phys 83, 579–602 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. II. Wiley and Sons, New York (1996)

    Google Scholar 

  11. Potmann H., Wallner J.: Computational Line Geometry. Springer Verlag, Berlin (2001)

    Google Scholar 

  12. Reznikov A.: The weak Blaschke conjecture for CP(n). Invent. Math 117, 447–454 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Reznikov A.: Symplectic twistor spaces. Ann. Global Anal. Geom. 11, 109–118 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Salvai M.: On the geometry of the space of oriented lines in Euclidean space. Manuscripta Math. 118, 181–189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Salvai M.: Geometry of the space of oriented lines in hyperbolic space. Glasg. Math. J. 49, 357–366 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Study E.: Von den Bewegungen und Umlegungen I, II. Math. Ann. 34, 441–566 (1891)

    Article  MathSciNet  Google Scholar 

  17. Synge J.L.: Principles of Mechanics. Dover, New York (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Guilfoyle.

Additional information

The first author was supported by the Leverhulme Trust, EM/9/2005/0069.

An erratum to this article is available at http://dx.doi.org/10.1007/s10455-016-9515-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseevsky, D.V., Guilfoyle, B. & Klingenberg, W. On the geometry of spaces of oriented geodesics. Ann Glob Anal Geom 40, 389–409 (2011). https://doi.org/10.1007/s10455-011-9261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-011-9261-5

Keywords

Mathematics Subject Classification (2000)

Navigation