Skip to main content
Log in

On the geometry of curves and conformal geodesics in the Möbius space

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

This article deals with the study of some properties of immersed curves in the conformal sphere \({\mathbb{Q}_n}\), viewed as a homogeneous space under the action of the Möbius group. After an overview on general well-known facts, we briefly focus on the links between Euclidean and conformal curvatures, in the spirit of F. Klein’s Erlangen program. The core of this article is the study of conformal geodesics, defined as the critical points of the conformal arclength functional. After writing down their Euler–Lagrange equations for any n, we prove an interesting codimension reduction, namely that every conformal geodesic in \({\mathbb{Q}_n}\) lies, in fact, in a totally umbilical 4-sphere \({\mathbb{Q}_4}\). We then extend and complete the work in Musso (Math Nachr 165:107–131, 1994) by solving the Euler–Lagrange equations for the curvatures and by providing an explicit expression even for those conformal geodesics not included in any conformal 3-sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold V., Varchenko A., Goussein-Zadé S.: Singularities of Differentiable Maps, vol. 1. Birkhäuser, Stuttgart (1985)

    Google Scholar 

  2. Banchoff T., White J.H.: The behavior of the total twist and the self-linking number of a closed space curve under inversions. Math. Scand. 36, 254–262 (1975)

    MATH  MathSciNet  Google Scholar 

  3. Beardon A.F.: The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91. Springer-Verlag, Berlin (1983)

    Google Scholar 

  4. Berger M.: Geometry II. Springer-Verlag, Berlin (1987)

    Book  MATH  Google Scholar 

  5. Blaschke W.: Differential geometrie III. Springer, Berlin (1929)

    Google Scholar 

  6. Bushmanova G.V., Norden A.P.: Elementy konformoi geometrii. Izdatelstvo Kazanskogo Universiteta, Kazan (1972)

    Google Scholar 

  7. Cairns G., Sharpe R.W.: On the inversive differential geometry of plane curves. L’Einsegn. Math. 36, 175–196 (1990)

    MATH  MathSciNet  Google Scholar 

  8. Cairns G., Sharpe R., Webb L.: Conformal invariants for curves and surfaces in three dimensional space forms. Rocky Mt. J. Math. 24, 933–959 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cartan E.: La méthode du repére mobile, la théorie des Groupes continus et le espaces généralisés. Hermann, Paris (1935)

    Google Scholar 

  10. Cartan E.: La théorie des Groupes finis et continus et la Géométrie Différentielle traités par la méthode du repère mobile. Gauthier Villars, Paris (1937)

    Google Scholar 

  11. Dubrovin B.A, Novikov S.P., Fomenko A.T.: Modern Geometry, Methods And Applications, Part I. Springer-Verlag, Berlin (1984)

    MATH  Google Scholar 

  12. Eisenhart L.P.: Riemannian Geometry. Princeton University Press, Princeton (1966)

    Google Scholar 

  13. Fenchel W.: Uber einen Jacobischen satz der Kurventheorie. Tokoku Math. J. 39, 95–97 (1934)

    Google Scholar 

  14. Griffiths P.A.: Exterior Differential Systems and the Calculus of Variations. Birkhäuser, Stuttgart (1983)

    MATH  Google Scholar 

  15. Hertrich-Jeromin U.: Introduction to Möbius Differential Geometry. London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  16. Jensen G.R.: Higher Order Contact of Submanifolds Of Homogeneous Spaces. Lecture Notes in Mathematics, vol. 610. Springer-Verlag, Berlin (1977)

    Google Scholar 

  17. Lawden D.F.: Elliptic Functions and Applications. Applied Mathematical Sciences, vol. 80. Springer-Verlag, Berlin (1989)

    Google Scholar 

  18. Liebmann, H.: Beiträge zur Inversionsgeometrie der Kurven, Münchener Berichte 79–94 (1923)

  19. Montesinos Amilibia A., Romero Fuster M.C., Sanabria Codesal E.: Conformal curvatures of curves in \({\mathbb{R}^{n+1}}\). Indag. Math. (N.S.) 12(3), 369–382 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Musso E.: The conformal arclength functional. Math. Nachr. 165, 107–131 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Osserman R.: The four or more vertex theorem. Am. Math. Mon. 92, 332–337 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Palais R.S.: A global formulation of the Lie theory of transformation groups. Mem. Am. Math. Soc. 22, 1–123 (1957)

    MathSciNet  Google Scholar 

  23. Pinkall U.: On the four-vertex theorem. Aequationes 34, 221–230 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Røgen P.: Gauss-Bonnet’s theorem and closed Frenet frames. Geom. Dedic. 73, 295–315 (1998)

    Article  Google Scholar 

  25. Saban G.: Nuove caratterizzazioni della sfera. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 25, 457–464 (1958)

    MathSciNet  Google Scholar 

  26. Scherrer W.: Eine Kennzeichnung der Kugel (German). Vierteljschr. Naturforsch. Ges. Zurich 85, 40–46 (1940) (Beiblatt 32)

    MathSciNet  Google Scholar 

  27. Schiemangk C., Sulanke R.: Submanifolds of the Möbius space. Math. Nachr. 96, 165–183 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sharpe R.W.: Differential Geometry. Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics, vol. 166. Springer-Verlag, Berlin (1997)

    Google Scholar 

  29. Sulanke R.: Submanifolds fo the Möbius space II. Frenet formulas and curves of constant curvatures. Math. Nachr. 100, 235–247 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sulanke R.: Submanifolds of the Möbius space. III. The analogue of O. Bonnet’s Theorem for hypersurfaces. Tensor 38, 311–317 (1982)

    MATH  MathSciNet  Google Scholar 

  31. Sulanke R., Švec A.: Zur Differentialgeometrie der Untermannigfaltigkeiten eines Kleinschen Raumes (german) [On the differential geometry of submanifolds of a Klein space]. Beiträge Algebra Geometry 10, 63–85 (1980)

    MATH  Google Scholar 

  32. Sulanke R., Wintgen P.: Differentialgeometrie und Faserbündel, (German) Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, Band 48. Birkhäuser Verlag, Stuttgart (1972)

    Google Scholar 

  33. Takasu T.: Differentialgeometrie in den kugelräumen. I. Konforme Differentialgeometrie von. Liouville und Mobius, Tokyo (1938)

    Google Scholar 

  34. Verbitskii L.L.: Fundamental of curve theory in a conformal space (M n ) of n dimensions (Russian). Izv. Vysš. Učebn. Zaved. Mat. 6(13), 26–37 (1959)

    Google Scholar 

  35. Vessiot E.: Contribution à la géométrie conforme. Enveloppes des sphères et courbes gauche. J. École Polytec. 25, 43–91 (1925)

    Google Scholar 

  36. Vranceanu G.: Leçons de géométrie différentielle, (French) 2 Vols. Éditions de l’ Académie de la République Populaire Roumaine, Bucharest (1957)

  37. White J.H.: Self linking and the Gauss integral in higher dimensions. Am. J. Math. 91(3), 693–728 (1969)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Mari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magliaro, M., Mari, L. & Rigoli, M. On the geometry of curves and conformal geodesics in the Möbius space. Ann Glob Anal Geom 40, 133–165 (2011). https://doi.org/10.1007/s10455-011-9250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-011-9250-8

Keywords

Navigation