Skip to main content
Log in

Harmonic morphisms and Riemannian geometry of tangent bundles

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let (TM, G) and \({(T_1 M,\tilde G)}\) respectively denote the tangent bundle and the unit tangent sphere bundle of a Riemannian manifold (M, g), equipped with arbitrary Riemannian g-natural metrics. After studying the geometry of the canonical projections π : (TM, G) → (M, g) and \({\pi_1:(T_1 M,\tilde G) \rightarrow (M,g)}\), we give necessary and sufficient conditions for π and π 1 to be harmonic morphisms. Some relevant classes of Riemannian g-natural metrics will be characterized in terms of harmonicity properties of the canonical projections. Moreover, we study the harmonicity of the canonical projection \({\Phi:(TM-\{0\},G)\to (T_1 M,\tilde G)}\) with respect to Riemannian g-natural metrics \({G,\tilde G}\) of Kaluza–Klein type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbassi M.T.K., Calvaruso G.: g-Natural contact metrics on unit tangent sphere bundles. Monatsh. Math. 151, 89–109 (2006)

    Article  MathSciNet  Google Scholar 

  2. Abbassi M.T.K., Calvaruso G.: Harmonic maps having tangent bundles with g-natural metrics as source or target. Rend. Sem. Mat. Torino 68, 1–20 (2010)

    Google Scholar 

  3. Abbassi M.T.K., Kowalski O.: On Einstein Riemannian g-natural metrics on unit tangent sphere bundles. Ann. Global Anal. Geom. 38(1), 11–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Abbassi M.T.K., Kowalski O.: Naturality of homogeneous metrics on Stiefel manifolds SO(m + 1)/SO(m − 1). Diff. Geom. Appl. 28(2), 131–139 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Abbassi M.T.K., Sarih M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math.(Brno) 41, 71–92 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Abbassi M.T.K., Sarih M.: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Diff. Geom. Appl. 22(1), 19–47 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Abbassi M.T.K., Calvaruso G., Perrone D.: Harmonicity of unit vector fields with respect to Riemannian natural metrics. Diff. Geom. Appl. 27, 157–169 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Abbassi M.T.K., Calvaruso G., Perrone D.: Some examples of harmonic maps for g-natural metrics. Ann. Math. Blaise Pascal 16, 305–320 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Abbassi M.T.K., Calvaruso G., Perrone D.: Harmonic maps defined by the geodesic flow. Houst. J. Math. 36(1), 69–90 (2010)

    MathSciNet  Google Scholar 

  10. Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. Q. J. Math. (to appear)

  11. Baird P.: Harmonic Maps with Symmetry, Harmonic Morphisms and Deformations of the Metrics. Research Notes in Mathematics. Pitman, Boston (1987)

    Google Scholar 

  12. Baird P., Gudmundsson S.: p-Harmonic maps and minimal submanifolds. Math. Ann. 294, 611–624 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Baird, P., Eells, J.: A conservation law for harmonic maps. In: Geometry Symposium, Utrecht 1980. Lecture Notes in Mathematics, vol. 894, pp. 1–25. Springer, Berlin (1981)

  14. Baird P., Wood J.C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathematical Society Monograph (NS) 29. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  15. Benyounes M., Lobeau E., Wood C.M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type. Diff. Geom. Appl. 25, 322–334 (2007)

    Article  MATH  Google Scholar 

  16. Calvaruso G., Perrone D.: Homogeneous and H-contact unit tangent sphere bundles. Aust. J. Math. 88, 323–337 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cheeger J., Gromoll D.: On the structure of complete manifolds of non negative curvature. Ann. Math. 96, 413–443 (1972)

    Article  MathSciNet  Google Scholar 

  18. Chen B.Y., Nagano T.: Harmonic metrics, harmonic tensors and Gauss maps. J. Math. Soc. Jpn. 36(2), 295–313 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eells J., Sampson J.H.: Harmonic mappings of Riemannian manifolds. Am. Math. J. 86, 109–160 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fuglede B.: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier (Grenoble) 28, 107–144 (1978)

    MATH  MathSciNet  Google Scholar 

  21. Gudmundsson, S.: The bibliography of harmonic morphisms. http://www.maths.lth.se/matematiklu/personal/sigma/harmonic/bibliography.html.

  22. Gudmundsson S., Kappos E.: On the geometry of the tangent bundle with the Cheegerf́bGromoll metric. Tokyo J. Math. 25(1), 75–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ishihara T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19, 215–229 (1979)

    MATH  MathSciNet  Google Scholar 

  24. Kolář I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  25. Kowalski O., Sekizawa M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles—a classification. Bull. Tokyo Gakugei Univ. 40(4), 1–29 (1988)

    MathSciNet  Google Scholar 

  26. Oniciuc C.: The tangent sphere bundles and harmonicity. Analele Stiint. Univ. “Al. I. Cuza” 43, 151–172 (1997)

    MathSciNet  Google Scholar 

  27. Oproiu V.: Some new geometric structures on the tangent bundle. Publ. Math. Debrecen 55, 261–281 (1999)

    MATH  MathSciNet  Google Scholar 

  28. Perrone D.: Unit vector fields on real space forms which are harmonic maps. Pac. J. Math. 239(1), 89–104 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Perrone D.: Minimality, harmonicity and CR geometry for Reeb vector fields. Int. J. Math. 9, 1189–1218 (2010)

    Article  Google Scholar 

  30. Wood C.M.: An existence theorem for harmonic sections. Manuscr. Math. 68, 69–75 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Calvaruso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvaruso, G., Perrone, D. Harmonic morphisms and Riemannian geometry of tangent bundles. Ann Glob Anal Geom 39, 187–213 (2011). https://doi.org/10.1007/s10455-010-9230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-010-9230-4

Keywords

Mathematics Subject Classification (2000)

Navigation